Training View
Experimental
The Workbench View classes are currently in experimental mode so have fun but expect issues and API changes going forward.
TrainingView Class: A View with an additional training column that marks holdout ids
TrainingView
Bases: CreateView
TrainingView Class: A View with an additional training column that marks holdout ids
Common Usage
# Create a default TrainingView
fs = FeatureSet("test_features")
training_view = TrainingView.create(fs)
df = training_view.pull_dataframe()
# Create a TrainingView with a specific set of columns
training_view = TrainingView.create(fs, column_list=["my_col1", "my_col2"])
# Query the view
df = training_view.query(f"SELECT * FROM {training_view.table} where training = TRUE")
Source code in src/workbench/core/views/training_view.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
create(feature_set, source_table=None, id_column=None, holdout_ids=None, filter_expression=None)
classmethod
Factory method to create and return a TrainingView instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_set
|
FeatureSet
|
A FeatureSet object |
required |
source_table
|
str
|
The table/view to create the view from. Defaults to None. |
None
|
id_column
|
str
|
The name of the id column. Defaults to None. |
None
|
holdout_ids
|
Union[list[str], list[int], None]
|
A list of holdout ids. Defaults to None. |
None
|
filter_expression
|
str
|
SQL filter expression (e.g., "age > 25 AND status = 'active'"). Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Union[View, None]
|
Union[View, None]: The created View object (or None if failed to create the view) |
Source code in src/workbench/core/views/training_view.py
Questions?
The SuperCowPowers team is happy to answer any questions you may have about AWS and Workbench. Please contact us at workbench@supercowpowers.com or on chat us up on Discord