Model to Endpoint
API Classes
For most users the API Classes will provide all the general functionality to create a full AWS ML Pipeline
ModelToEndpoint: Deploy an Endpoint for a Model
ModelToEndpoint
Bases: Transform
ModelToEndpoint: Deploy an Endpoint for a Model
Common Usage
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
__init__(model_name, endpoint_name, serverless=True, instance='ml.t2.medium')
ModelToEndpoint Initialization Args: model_name(str): The Name of the input Model endpoint_name(str): The Name of the output Endpoint serverless(bool): Deploy the Endpoint in serverless mode (default: True) instance(str): The instance type to use for the Endpoint (default: "ml.t2.medium")
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
post_transform(**kwargs)
Post-Transform: Calling onboard() for the Endpoint
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
transform_impl(**kwargs)
Deploy an Endpoint for a Model