Model to Endpoint
API Classes
For most users the API Classes will provide all the general functionality to create a full AWS ML Pipeline
ModelToEndpoint: Deploy an Endpoint for a Model
ModelToEndpoint
Bases: Transform
ModelToEndpoint: Deploy an Endpoint for a Model
Common Usage
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
__init__(model_uuid, endpoint_uuid, serverless=True, instance='ml.t2.medium')
ModelToEndpoint Initialization Args: model_uuid(str): The UUID of the input Model endpoint_uuid(str): The UUID of the output Endpoint serverless(bool): Deploy the Endpoint in serverless mode (default: True) instance(str): The instance type to use for the Endpoint (default: "ml.t2.medium")
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
_deploy_model(model_package_arn)
Internal Method: Deploy the Model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_package_arn(str)
|
The Model Package ARN used to deploy the Endpoint |
required |
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
post_transform(**kwargs)
Post-Transform: Calling onboard() for the Endpoint
Source code in src/workbench/core/transforms/model_to_endpoint/model_to_endpoint.py
transform_impl()
Deploy an Endpoint for a Model