MonitorCore
API Classes
Found a method here you want to use? The API Classes have method pass-through so just call the method on the Monitor API Class and voilĂ it works the same.
MonitorCore class for monitoring SageMaker endpoints
MonitorCore
Source code in src/workbench/core/artifacts/monitor_core.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
__init__(endpoint_name, instance_type='ml.t3.large')
ExtractModelArtifact Class Args: endpoint_name (str): Name of the endpoint to set up monitoring for instance_type (str): Instance type to use for monitoring. Defaults to "ml.t3.large". Other options: ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ...
Source code in src/workbench/core/artifacts/monitor_core.py
__repr__()
String representation of this MonitorCore object
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
String representation of this MonitorCore object |
Source code in src/workbench/core/artifacts/monitor_core.py
add_data_capture(capture_percentage=100)
Add data capture configuration for the SageMaker endpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
capture_percentage
|
int
|
Percentage of data to capture. Defaults to 100. |
100
|
Source code in src/workbench/core/artifacts/monitor_core.py
baseline_exists()
Check if baseline files exist in S3.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if all files exist, False otherwise. |
Source code in src/workbench/core/artifacts/monitor_core.py
create_baseline(recreate=False)
Code to create a baseline for monitoring Args: recreate (bool): If True, recreate the baseline even if it already exists Notes: This will create/write three files to the baseline_dir: - baseline.csv - constraints.json - statistics.json
Source code in src/workbench/core/artifacts/monitor_core.py
create_monitoring_schedule(schedule='hourly', recreate=False)
Sets up the monitoring schedule for the model endpoint. Args: schedule (str): The schedule for the monitoring job (hourly or daily, defaults to hourly). recreate (bool): If True, recreate the monitoring schedule even if it already exists.
Source code in src/workbench/core/artifacts/monitor_core.py
details()
Return the details of the monitoring for the endpoint
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
The details of the monitoring for the endpoint |
Source code in src/workbench/core/artifacts/monitor_core.py
get_baseline()
Code to get the baseline CSV from the S3 baseline directory
Returns:
Type | Description |
---|---|
Union[DataFrame, None]
|
pd.DataFrame: The baseline CSV as a DataFrame (None if it doesn't exist) |
Source code in src/workbench/core/artifacts/monitor_core.py
get_constraints()
Code to get the constraints from the baseline
Returns:
Type | Description |
---|---|
Union[DataFrame, None]
|
pd.DataFrame: The constraints from the baseline (constraints.json) (None if it doesn't exist) |
Source code in src/workbench/core/artifacts/monitor_core.py
get_latest_data_capture()
Get the latest data capture from S3.
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
input), DataFrame(output
|
Flattened and processed DataFrames for input and output data. |
Source code in src/workbench/core/artifacts/monitor_core.py
get_statistics()
Code to get the statistics from the baseline
Returns:
Type | Description |
---|---|
Union[DataFrame, None]
|
pd.DataFrame: The statistics from the baseline (statistics.json) (None if it doesn't exist) |
Source code in src/workbench/core/artifacts/monitor_core.py
is_data_capture_configured(capture_percentage)
Check if data capture is already configured on the endpoint. Args: capture_percentage (int): Expected data capture percentage. Returns: bool: True if data capture is already configured, False otherwise.
Source code in src/workbench/core/artifacts/monitor_core.py
last_run_details()
Return the details of the last monitoring run for the endpoint
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the last monitoring run for the endpoint (None if no monitoring schedule) |
Source code in src/workbench/core/artifacts/monitor_core.py
monitoring_schedule_exists()
Code to figure out if a monitoring schedule already exists for this endpoint
Source code in src/workbench/core/artifacts/monitor_core.py
process_captured_data(df)
staticmethod
Process the captured data DataFrame to extract and flatten the nested data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame with captured data. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
input), DataFrame(output
|
Flattened and processed DataFrames for input and output data. |
Source code in src/workbench/core/artifacts/monitor_core.py
setup_alerts()
summary()
Return the summary of information about the endpoint monitor
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Summary of information about the endpoint monitor |