Skip to content

MonitorCore

API Classes

Found a method here you want to use? The API Classes have method pass-through so just call the method on the Monitor API Class and voilĂ  it works the same.

MonitorCore class for monitoring SageMaker endpoints

MonitorCore

Source code in src/workbench/core/artifacts/monitor_core.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class MonitorCore:
    def __init__(self, endpoint_name, instance_type="ml.t3.large"):
        """ExtractModelArtifact Class
        Args:
            endpoint_name (str): Name of the endpoint to set up monitoring for
            instance_type (str): Instance type to use for monitoring. Defaults to "ml.t3.large".
                                 Other options: ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ...
        """
        self.log = logging.getLogger("workbench")
        self.endpoint_name = endpoint_name
        self.endpoint = EndpointCore(self.endpoint_name)

        # Initialize Class Attributes
        self.sagemaker_session = self.endpoint.sm_session
        self.sagemaker_client = self.endpoint.sm_client
        self.data_capture_path = self.endpoint.endpoint_data_capture_path
        self.monitoring_path = self.endpoint.endpoint_monitoring_path
        self.instance_type = instance_type
        self.monitoring_schedule_name = f"{self.endpoint_name}-monitoring-schedule"
        self.monitoring_output_path = f"{self.monitoring_path}/monitoring_reports"
        self.baseline_dir = f"{self.monitoring_path}/baseline"
        self.baseline_csv_file = f"{self.baseline_dir}/baseline.csv"
        self.constraints_json_file = f"{self.baseline_dir}/constraints.json"
        self.statistics_json_file = f"{self.baseline_dir}/statistics.json"

        # Initialize the DefaultModelMonitor
        self.workbench_role_arn = AWSAccountClamp().aws_session.get_workbench_execution_role_arn()
        self.model_monitor = DefaultModelMonitor(role=self.workbench_role_arn, instance_type=self.instance_type)

    def summary(self) -> dict:
        """Return the summary of information about the endpoint monitor

        Returns:
            dict: Summary of information about the endpoint monitor
        """
        if self.endpoint.is_serverless():
            return {
                "endpoint_type": "serverless",
                "data_capture": "not supported",
                "baseline": "not supported",
                "monitoring_schedule": "not supported",
            }
        else:
            summary = {
                "endpoint_type": "realtime",
                "data_capture": self.is_data_capture_configured(capture_percentage=100),
                "baseline": self.baseline_exists(),
                "monitoring_schedule": self.monitoring_schedule_exists(),
            }
            summary.update(self.last_run_details() or {})
            return summary

    def __repr__(self) -> str:
        """String representation of this MonitorCore object

        Returns:
            str: String representation of this MonitorCore object
        """
        summary_dict = self.summary()
        summary_items = [f"  {repr(key)}: {repr(value)}" for key, value in summary_dict.items()]
        summary_str = f"{self.__class__.__name__}: {self.endpoint_name}\n" + ",\n".join(summary_items)
        return summary_str

    def last_run_details(self) -> Union[dict, None]:
        """Return the details of the last monitoring run for the endpoint

        Returns:
            dict: The details of the last monitoring run for the endpoint (None if no monitoring schedule)
        """
        # Check if we have a monitoring schedule
        if not self.monitoring_schedule_exists():
            return None

        # Get the details of the last monitoring run
        schedule_details = self.sagemaker_client.describe_monitoring_schedule(
            MonitoringScheduleName=self.monitoring_schedule_name
        )
        last_run_status = schedule_details.get("LastMonitoringExecutionSummary", {}).get("MonitoringExecutionStatus")
        last_run_time = schedule_details.get("LastMonitoringExecutionSummary", {}).get("ScheduledTime")
        failure_reason = schedule_details.get("LastMonitoringExecutionSummary", {}).get("FailureReason")
        return {
            "last_run_status": last_run_status,
            "last_run_time": str(last_run_time),
            "failure_reason": failure_reason,
        }

    def details(self) -> dict:
        """Return the details of the monitoring for the endpoint

        Returns:
            dict: The details of the monitoring for the endpoint
        """
        # Check if we have data capture
        if self.is_data_capture_configured(capture_percentage=100):
            data_capture_path = self.data_capture_path
        else:
            data_capture_path = None

        # Check if we have a baseline
        if self.baseline_exists():
            baseline_csv_file = self.baseline_csv_file
            constraints_json_file = self.constraints_json_file
            statistics_json_file = self.statistics_json_file
        else:
            baseline_csv_file = None
            constraints_json_file = None
            statistics_json_file = None

        # Check if we have a monitoring schedule
        if self.monitoring_schedule_exists():
            schedule_details = self.sagemaker_client.describe_monitoring_schedule(
                MonitoringScheduleName=self.monitoring_schedule_name
            )

            # General monitoring details
            schedule_name = schedule_details.get("MonitoringScheduleName")
            schedule_status = schedule_details.get("MonitoringScheduleStatus")
            output_path = self.monitoring_output_path
            last_run_details = self.last_run_details()
        else:
            schedule_name = None
            schedule_status = "Not Scheduled"
            schedule_details = None
            output_path = None
            last_run_details = None

        # General monitoring details
        general = {
            "data_capture_path": data_capture_path,
            "baseline_csv_file": baseline_csv_file,
            "baseline_constraints_json_file": constraints_json_file,
            "baseline_statistics_json_file": statistics_json_file,
            "monitoring_schedule_name": schedule_name,
            "monitoring_output_path": output_path,
            "monitoring_schedule_status": schedule_status,
            "monitoring_schedule_details": schedule_details,
        }
        if last_run_details:
            general.update(last_run_details)
        return general

    def add_data_capture(self, capture_percentage=100):
        """
        Add data capture configuration for the SageMaker endpoint.

        Args:
            capture_percentage (int): Percentage of data to capture. Defaults to 100.
        """

        # Check if this endpoint is a serverless endpoint
        if self.endpoint.is_serverless():
            self.log.warning("Data capture is not currently supported for serverless endpoints.")
            return

        # Check if the endpoint already has data capture configured
        if self.is_data_capture_configured(capture_percentage):
            self.log.important(f"Data capture {capture_percentage} already configured for {self.endpoint_name}.")
            return

        # Get the current endpoint configuration name
        current_endpoint_config_name = self.endpoint.endpoint_config_name()

        # Log the data capture path
        self.log.important(f"Adding Data Capture to {self.endpoint_name} --> {self.data_capture_path}")
        self.log.important("This normally redeploys the endpoint...")

        # Setup data capture config
        data_capture_config = DataCaptureConfig(
            enable_capture=True,
            sampling_percentage=capture_percentage,
            destination_s3_uri=self.data_capture_path,
            capture_options=["Input", "Output"],
            csv_content_types=["text/csv"],
        )

        # Create a Predictor instance and update data capture configuration
        predictor = Predictor(self.endpoint_name, sagemaker_session=self.sagemaker_session)
        predictor.update_data_capture_config(data_capture_config=data_capture_config)

        # Delete the old endpoint configuration
        self.log.important(f"Deleting old endpoint configuration: {current_endpoint_config_name}")
        self.sagemaker_client.delete_endpoint_config(EndpointConfigName=current_endpoint_config_name)

    def is_data_capture_configured(self, capture_percentage):
        """
        Check if data capture is already configured on the endpoint.
        Args:
            capture_percentage (int): Expected data capture percentage.
        Returns:
            bool: True if data capture is already configured, False otherwise.
        """
        try:
            endpoint_config_name = self.endpoint.endpoint_config_name()
            endpoint_config = self.sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
            data_capture_config = endpoint_config.get("DataCaptureConfig", {})

            # Check if data capture is enabled and the percentage matches
            is_enabled = data_capture_config.get("EnableCapture", False)
            current_percentage = data_capture_config.get("InitialSamplingPercentage", 0)
            return is_enabled and current_percentage == capture_percentage
        except Exception as e:
            self.log.error(f"Error checking data capture configuration: {e}")
            return False

    def get_latest_data_capture(self) -> (pd.DataFrame, pd.DataFrame):
        """
        Get the latest data capture from S3.

        Returns:
            DataFrame (input), DataFrame(output): Flattened and processed DataFrames for input and output data.
        """
        # List files in the specified S3 path
        files = wr.s3.list_objects(self.data_capture_path)

        if files:
            print(f"Found {len(files)} files in {self.data_capture_path}. Reading the most recent file.")

            # Read the most recent file into a DataFrame
            df = wr.s3.read_json(path=files[-1], lines=True)  # Reads the last file assuming it's the most recent one

            # Process the captured data and return the input and output DataFrames
            return self.process_captured_data(df)
        else:
            print(f"No data capture files found in {self.data_capture_path}.")
            return None, None

    @staticmethod
    def process_captured_data(df: pd.DataFrame) -> (pd.DataFrame, pd.DataFrame):
        """
        Process the captured data DataFrame to extract and flatten the nested data.

        Args:
            df (DataFrame): DataFrame with captured data.

        Returns:
            DataFrame (input), DataFrame(output): Flattened and processed DataFrames for input and output data.
        """
        processed_records = []

        # Phase1: Process the AWS Data Capture format into a flatter DataFrame
        for _, row in df.iterrows():
            # Extract data from captureData dictionary
            capture_data = row["captureData"]
            input_data = capture_data["endpointInput"]
            output_data = capture_data["endpointOutput"]

            # Process input and output, both meta and actual data
            record = {
                "input_content_type": input_data.get("observedContentType"),
                "input_encoding": input_data.get("encoding"),
                "input": input_data.get("data"),
                "output_content_type": output_data.get("observedContentType"),
                "output_encoding": output_data.get("encoding"),
                "output": output_data.get("data"),
            }
            processed_records.append(record)
        processed_df = pd.DataFrame(processed_records)

        # Phase2: Process the input and output 'data' columns into separate DataFrames
        input_df_list = []
        output_df_list = []
        for _, row in processed_df.iterrows():
            input_df = pd.read_csv(StringIO(row["input"]))
            input_df_list.append(input_df)
            output_df = pd.read_csv(StringIO(row["output"]))
            output_df_list.append(output_df)

        # Return the input and output DataFrames
        return pd.concat(input_df_list), pd.concat(output_df_list)

    def baseline_exists(self) -> bool:
        """
        Check if baseline files exist in S3.

        Returns:
            bool: True if all files exist, False otherwise.
        """

        files = [self.baseline_csv_file, self.constraints_json_file, self.statistics_json_file]
        return all(wr.s3.does_object_exist(file) for file in files)

    def create_baseline(self, recreate: bool = False):
        """Code to create a baseline for monitoring
        Args:
            recreate (bool): If True, recreate the baseline even if it already exists
        Notes:
            This will create/write three files to the baseline_dir:
            - baseline.csv
            - constraints.json
            - statistics.json
        """
        # Check if this endpoint is a serverless endpoint
        if self.endpoint.is_serverless():
            self.log.warning(
                "You can create a baseline but it can't be used/monitored for serverless endpoints, skipping..."
            )
            return

        if not self.baseline_exists() or recreate:
            # Create a baseline for monitoring (training data from the FeatureSet)
            baseline_df = endpoint_utils.fs_training_data(self.endpoint)
            wr.s3.to_csv(baseline_df, self.baseline_csv_file, index=False)

            self.log.important(f"Creating baseline files for {self.endpoint_name} --> {self.baseline_dir}")
            self.model_monitor.suggest_baseline(
                baseline_dataset=self.baseline_csv_file,
                dataset_format=DatasetFormat.csv(header=True),
                output_s3_uri=self.baseline_dir,
            )
        else:
            self.log.important(f"Baseline already exists for {self.endpoint_name}")

    def get_baseline(self) -> Union[pd.DataFrame, None]:
        """Code to get the baseline CSV from the S3 baseline directory

        Returns:
            pd.DataFrame: The baseline CSV as a DataFrame (None if it doesn't exist)
        """
        # Read the monitoring data from S3
        if not wr.s3.does_object_exist(path=self.baseline_csv_file):
            self.log.warning("baseline.csv data does not exist in S3.")
            return None
        else:
            return wr.s3.read_csv(self.baseline_csv_file)

    def get_constraints(self) -> Union[pd.DataFrame, None]:
        """Code to get the constraints from the baseline

        Returns:
           pd.DataFrame: The constraints from the baseline (constraints.json) (None if it doesn't exist)
        """
        return self._get_monitor_json_data(self.constraints_json_file)

    def get_statistics(self) -> Union[pd.DataFrame, None]:
        """Code to get the statistics from the baseline

        Returns:
            pd.DataFrame: The statistics from the baseline (statistics.json) (None if it doesn't exist)
        """
        return self._get_monitor_json_data(self.statistics_json_file)

    def _get_monitor_json_data(self, s3_path: str) -> Union[pd.DataFrame, None]:
        """Internal: Convert the JSON monitoring data into a DataFrame
        Args:
            s3_path(str): The S3 path to the monitoring data
        Returns:
            pd.DataFrame: Monitoring data in DataFrame form (None if it doesn't exist)
        """
        # Read the monitoring data from S3
        if not wr.s3.does_object_exist(path=s3_path):
            self.log.warning("Monitoring data does not exist in S3.")
            return None
        else:
            raw_json = read_s3_file(s3_path=s3_path)
            monitoring_data = json.loads(raw_json)
            monitoring_df = pd.json_normalize(monitoring_data["features"])
            return monitoring_df

    def create_monitoring_schedule(self, schedule: str = "hourly", recreate: bool = False):
        """
        Sets up the monitoring schedule for the model endpoint.
        Args:
            schedule (str): The schedule for the monitoring job (hourly or daily, defaults to hourly).
            recreate (bool): If True, recreate the monitoring schedule even if it already exists.
        """
        # Check if this endpoint is a serverless endpoint
        if self.endpoint.is_serverless():
            self.log.warning("Monitoring Schedule is not currently supported for serverless endpoints.")
            return

        # Set up the monitoring schedule, name, and output path
        if schedule == "daily":
            schedule = CronExpressionGenerator.daily()
        else:
            schedule = CronExpressionGenerator.hourly()

        # Check if the baseline exists
        if not self.baseline_exists():
            self.log.warning(f"Baseline does not exist for {self.endpoint_name}. Call create_baseline() first...")
            return

        # Check if monitoring schedule already exists
        schedule_exists = self.monitoring_schedule_exists()

        # If the schedule exists, and we don't want to recreate it, return
        if schedule_exists and not recreate:
            return

        # If the schedule exists, delete it
        if schedule_exists:
            self.log.important(f"Deleting existing monitoring schedule for {self.endpoint_name}...")
            self.sagemaker_client.delete_monitoring_schedule(MonitoringScheduleName=self.monitoring_schedule_name)

        # Set up a NEW monitoring schedule
        self.model_monitor.create_monitoring_schedule(
            monitor_schedule_name=self.monitoring_schedule_name,
            endpoint_input=self.endpoint_name,
            output_s3_uri=self.monitoring_output_path,
            statistics=self.statistics_json_file,
            constraints=self.constraints_json_file,
            schedule_cron_expression=schedule,
        )
        self.log.important(f"New Monitoring schedule created for {self.endpoint_name}.")

    def setup_alerts(self):
        """Code to set up alerts based on monitoring results"""
        pass

    def monitoring_schedule_exists(self):
        """Code to figure out if a monitoring schedule already exists for this endpoint"""
        existing_schedules = self.sagemaker_client.list_monitoring_schedules(MaxResults=100).get(
            "MonitoringScheduleSummaries", []
        )
        if any(schedule["MonitoringScheduleName"] == self.monitoring_schedule_name for schedule in existing_schedules):
            self.log.info(f"Monitoring schedule already exists for {self.endpoint_name}.")
            return True
        else:
            self.log.info(f"Could not find a Monitoring schedule for {self.endpoint_name}.")
            return False

__init__(endpoint_name, instance_type='ml.t3.large')

ExtractModelArtifact Class Args: endpoint_name (str): Name of the endpoint to set up monitoring for instance_type (str): Instance type to use for monitoring. Defaults to "ml.t3.large". Other options: ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ...

Source code in src/workbench/core/artifacts/monitor_core.py
def __init__(self, endpoint_name, instance_type="ml.t3.large"):
    """ExtractModelArtifact Class
    Args:
        endpoint_name (str): Name of the endpoint to set up monitoring for
        instance_type (str): Instance type to use for monitoring. Defaults to "ml.t3.large".
                             Other options: ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ...
    """
    self.log = logging.getLogger("workbench")
    self.endpoint_name = endpoint_name
    self.endpoint = EndpointCore(self.endpoint_name)

    # Initialize Class Attributes
    self.sagemaker_session = self.endpoint.sm_session
    self.sagemaker_client = self.endpoint.sm_client
    self.data_capture_path = self.endpoint.endpoint_data_capture_path
    self.monitoring_path = self.endpoint.endpoint_monitoring_path
    self.instance_type = instance_type
    self.monitoring_schedule_name = f"{self.endpoint_name}-monitoring-schedule"
    self.monitoring_output_path = f"{self.monitoring_path}/monitoring_reports"
    self.baseline_dir = f"{self.monitoring_path}/baseline"
    self.baseline_csv_file = f"{self.baseline_dir}/baseline.csv"
    self.constraints_json_file = f"{self.baseline_dir}/constraints.json"
    self.statistics_json_file = f"{self.baseline_dir}/statistics.json"

    # Initialize the DefaultModelMonitor
    self.workbench_role_arn = AWSAccountClamp().aws_session.get_workbench_execution_role_arn()
    self.model_monitor = DefaultModelMonitor(role=self.workbench_role_arn, instance_type=self.instance_type)

__repr__()

String representation of this MonitorCore object

Returns:

Name Type Description
str str

String representation of this MonitorCore object

Source code in src/workbench/core/artifacts/monitor_core.py
def __repr__(self) -> str:
    """String representation of this MonitorCore object

    Returns:
        str: String representation of this MonitorCore object
    """
    summary_dict = self.summary()
    summary_items = [f"  {repr(key)}: {repr(value)}" for key, value in summary_dict.items()]
    summary_str = f"{self.__class__.__name__}: {self.endpoint_name}\n" + ",\n".join(summary_items)
    return summary_str

add_data_capture(capture_percentage=100)

Add data capture configuration for the SageMaker endpoint.

Parameters:

Name Type Description Default
capture_percentage int

Percentage of data to capture. Defaults to 100.

100
Source code in src/workbench/core/artifacts/monitor_core.py
def add_data_capture(self, capture_percentage=100):
    """
    Add data capture configuration for the SageMaker endpoint.

    Args:
        capture_percentage (int): Percentage of data to capture. Defaults to 100.
    """

    # Check if this endpoint is a serverless endpoint
    if self.endpoint.is_serverless():
        self.log.warning("Data capture is not currently supported for serverless endpoints.")
        return

    # Check if the endpoint already has data capture configured
    if self.is_data_capture_configured(capture_percentage):
        self.log.important(f"Data capture {capture_percentage} already configured for {self.endpoint_name}.")
        return

    # Get the current endpoint configuration name
    current_endpoint_config_name = self.endpoint.endpoint_config_name()

    # Log the data capture path
    self.log.important(f"Adding Data Capture to {self.endpoint_name} --> {self.data_capture_path}")
    self.log.important("This normally redeploys the endpoint...")

    # Setup data capture config
    data_capture_config = DataCaptureConfig(
        enable_capture=True,
        sampling_percentage=capture_percentage,
        destination_s3_uri=self.data_capture_path,
        capture_options=["Input", "Output"],
        csv_content_types=["text/csv"],
    )

    # Create a Predictor instance and update data capture configuration
    predictor = Predictor(self.endpoint_name, sagemaker_session=self.sagemaker_session)
    predictor.update_data_capture_config(data_capture_config=data_capture_config)

    # Delete the old endpoint configuration
    self.log.important(f"Deleting old endpoint configuration: {current_endpoint_config_name}")
    self.sagemaker_client.delete_endpoint_config(EndpointConfigName=current_endpoint_config_name)

baseline_exists()

Check if baseline files exist in S3.

Returns:

Name Type Description
bool bool

True if all files exist, False otherwise.

Source code in src/workbench/core/artifacts/monitor_core.py
def baseline_exists(self) -> bool:
    """
    Check if baseline files exist in S3.

    Returns:
        bool: True if all files exist, False otherwise.
    """

    files = [self.baseline_csv_file, self.constraints_json_file, self.statistics_json_file]
    return all(wr.s3.does_object_exist(file) for file in files)

create_baseline(recreate=False)

Code to create a baseline for monitoring Args: recreate (bool): If True, recreate the baseline even if it already exists Notes: This will create/write three files to the baseline_dir: - baseline.csv - constraints.json - statistics.json

Source code in src/workbench/core/artifacts/monitor_core.py
def create_baseline(self, recreate: bool = False):
    """Code to create a baseline for monitoring
    Args:
        recreate (bool): If True, recreate the baseline even if it already exists
    Notes:
        This will create/write three files to the baseline_dir:
        - baseline.csv
        - constraints.json
        - statistics.json
    """
    # Check if this endpoint is a serverless endpoint
    if self.endpoint.is_serverless():
        self.log.warning(
            "You can create a baseline but it can't be used/monitored for serverless endpoints, skipping..."
        )
        return

    if not self.baseline_exists() or recreate:
        # Create a baseline for monitoring (training data from the FeatureSet)
        baseline_df = endpoint_utils.fs_training_data(self.endpoint)
        wr.s3.to_csv(baseline_df, self.baseline_csv_file, index=False)

        self.log.important(f"Creating baseline files for {self.endpoint_name} --> {self.baseline_dir}")
        self.model_monitor.suggest_baseline(
            baseline_dataset=self.baseline_csv_file,
            dataset_format=DatasetFormat.csv(header=True),
            output_s3_uri=self.baseline_dir,
        )
    else:
        self.log.important(f"Baseline already exists for {self.endpoint_name}")

create_monitoring_schedule(schedule='hourly', recreate=False)

Sets up the monitoring schedule for the model endpoint. Args: schedule (str): The schedule for the monitoring job (hourly or daily, defaults to hourly). recreate (bool): If True, recreate the monitoring schedule even if it already exists.

Source code in src/workbench/core/artifacts/monitor_core.py
def create_monitoring_schedule(self, schedule: str = "hourly", recreate: bool = False):
    """
    Sets up the monitoring schedule for the model endpoint.
    Args:
        schedule (str): The schedule for the monitoring job (hourly or daily, defaults to hourly).
        recreate (bool): If True, recreate the monitoring schedule even if it already exists.
    """
    # Check if this endpoint is a serverless endpoint
    if self.endpoint.is_serverless():
        self.log.warning("Monitoring Schedule is not currently supported for serverless endpoints.")
        return

    # Set up the monitoring schedule, name, and output path
    if schedule == "daily":
        schedule = CronExpressionGenerator.daily()
    else:
        schedule = CronExpressionGenerator.hourly()

    # Check if the baseline exists
    if not self.baseline_exists():
        self.log.warning(f"Baseline does not exist for {self.endpoint_name}. Call create_baseline() first...")
        return

    # Check if monitoring schedule already exists
    schedule_exists = self.monitoring_schedule_exists()

    # If the schedule exists, and we don't want to recreate it, return
    if schedule_exists and not recreate:
        return

    # If the schedule exists, delete it
    if schedule_exists:
        self.log.important(f"Deleting existing monitoring schedule for {self.endpoint_name}...")
        self.sagemaker_client.delete_monitoring_schedule(MonitoringScheduleName=self.monitoring_schedule_name)

    # Set up a NEW monitoring schedule
    self.model_monitor.create_monitoring_schedule(
        monitor_schedule_name=self.monitoring_schedule_name,
        endpoint_input=self.endpoint_name,
        output_s3_uri=self.monitoring_output_path,
        statistics=self.statistics_json_file,
        constraints=self.constraints_json_file,
        schedule_cron_expression=schedule,
    )
    self.log.important(f"New Monitoring schedule created for {self.endpoint_name}.")

details()

Return the details of the monitoring for the endpoint

Returns:

Name Type Description
dict dict

The details of the monitoring for the endpoint

Source code in src/workbench/core/artifacts/monitor_core.py
def details(self) -> dict:
    """Return the details of the monitoring for the endpoint

    Returns:
        dict: The details of the monitoring for the endpoint
    """
    # Check if we have data capture
    if self.is_data_capture_configured(capture_percentage=100):
        data_capture_path = self.data_capture_path
    else:
        data_capture_path = None

    # Check if we have a baseline
    if self.baseline_exists():
        baseline_csv_file = self.baseline_csv_file
        constraints_json_file = self.constraints_json_file
        statistics_json_file = self.statistics_json_file
    else:
        baseline_csv_file = None
        constraints_json_file = None
        statistics_json_file = None

    # Check if we have a monitoring schedule
    if self.monitoring_schedule_exists():
        schedule_details = self.sagemaker_client.describe_monitoring_schedule(
            MonitoringScheduleName=self.monitoring_schedule_name
        )

        # General monitoring details
        schedule_name = schedule_details.get("MonitoringScheduleName")
        schedule_status = schedule_details.get("MonitoringScheduleStatus")
        output_path = self.monitoring_output_path
        last_run_details = self.last_run_details()
    else:
        schedule_name = None
        schedule_status = "Not Scheduled"
        schedule_details = None
        output_path = None
        last_run_details = None

    # General monitoring details
    general = {
        "data_capture_path": data_capture_path,
        "baseline_csv_file": baseline_csv_file,
        "baseline_constraints_json_file": constraints_json_file,
        "baseline_statistics_json_file": statistics_json_file,
        "monitoring_schedule_name": schedule_name,
        "monitoring_output_path": output_path,
        "monitoring_schedule_status": schedule_status,
        "monitoring_schedule_details": schedule_details,
    }
    if last_run_details:
        general.update(last_run_details)
    return general

get_baseline()

Code to get the baseline CSV from the S3 baseline directory

Returns:

Type Description
Union[DataFrame, None]

pd.DataFrame: The baseline CSV as a DataFrame (None if it doesn't exist)

Source code in src/workbench/core/artifacts/monitor_core.py
def get_baseline(self) -> Union[pd.DataFrame, None]:
    """Code to get the baseline CSV from the S3 baseline directory

    Returns:
        pd.DataFrame: The baseline CSV as a DataFrame (None if it doesn't exist)
    """
    # Read the monitoring data from S3
    if not wr.s3.does_object_exist(path=self.baseline_csv_file):
        self.log.warning("baseline.csv data does not exist in S3.")
        return None
    else:
        return wr.s3.read_csv(self.baseline_csv_file)

get_constraints()

Code to get the constraints from the baseline

Returns:

Type Description
Union[DataFrame, None]

pd.DataFrame: The constraints from the baseline (constraints.json) (None if it doesn't exist)

Source code in src/workbench/core/artifacts/monitor_core.py
def get_constraints(self) -> Union[pd.DataFrame, None]:
    """Code to get the constraints from the baseline

    Returns:
       pd.DataFrame: The constraints from the baseline (constraints.json) (None if it doesn't exist)
    """
    return self._get_monitor_json_data(self.constraints_json_file)

get_latest_data_capture()

Get the latest data capture from S3.

Returns:

Name Type Description
DataFrame input), DataFrame(output

Flattened and processed DataFrames for input and output data.

Source code in src/workbench/core/artifacts/monitor_core.py
def get_latest_data_capture(self) -> (pd.DataFrame, pd.DataFrame):
    """
    Get the latest data capture from S3.

    Returns:
        DataFrame (input), DataFrame(output): Flattened and processed DataFrames for input and output data.
    """
    # List files in the specified S3 path
    files = wr.s3.list_objects(self.data_capture_path)

    if files:
        print(f"Found {len(files)} files in {self.data_capture_path}. Reading the most recent file.")

        # Read the most recent file into a DataFrame
        df = wr.s3.read_json(path=files[-1], lines=True)  # Reads the last file assuming it's the most recent one

        # Process the captured data and return the input and output DataFrames
        return self.process_captured_data(df)
    else:
        print(f"No data capture files found in {self.data_capture_path}.")
        return None, None

get_statistics()

Code to get the statistics from the baseline

Returns:

Type Description
Union[DataFrame, None]

pd.DataFrame: The statistics from the baseline (statistics.json) (None if it doesn't exist)

Source code in src/workbench/core/artifacts/monitor_core.py
def get_statistics(self) -> Union[pd.DataFrame, None]:
    """Code to get the statistics from the baseline

    Returns:
        pd.DataFrame: The statistics from the baseline (statistics.json) (None if it doesn't exist)
    """
    return self._get_monitor_json_data(self.statistics_json_file)

is_data_capture_configured(capture_percentage)

Check if data capture is already configured on the endpoint. Args: capture_percentage (int): Expected data capture percentage. Returns: bool: True if data capture is already configured, False otherwise.

Source code in src/workbench/core/artifacts/monitor_core.py
def is_data_capture_configured(self, capture_percentage):
    """
    Check if data capture is already configured on the endpoint.
    Args:
        capture_percentage (int): Expected data capture percentage.
    Returns:
        bool: True if data capture is already configured, False otherwise.
    """
    try:
        endpoint_config_name = self.endpoint.endpoint_config_name()
        endpoint_config = self.sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
        data_capture_config = endpoint_config.get("DataCaptureConfig", {})

        # Check if data capture is enabled and the percentage matches
        is_enabled = data_capture_config.get("EnableCapture", False)
        current_percentage = data_capture_config.get("InitialSamplingPercentage", 0)
        return is_enabled and current_percentage == capture_percentage
    except Exception as e:
        self.log.error(f"Error checking data capture configuration: {e}")
        return False

last_run_details()

Return the details of the last monitoring run for the endpoint

Returns:

Name Type Description
dict Union[dict, None]

The details of the last monitoring run for the endpoint (None if no monitoring schedule)

Source code in src/workbench/core/artifacts/monitor_core.py
def last_run_details(self) -> Union[dict, None]:
    """Return the details of the last monitoring run for the endpoint

    Returns:
        dict: The details of the last monitoring run for the endpoint (None if no monitoring schedule)
    """
    # Check if we have a monitoring schedule
    if not self.monitoring_schedule_exists():
        return None

    # Get the details of the last monitoring run
    schedule_details = self.sagemaker_client.describe_monitoring_schedule(
        MonitoringScheduleName=self.monitoring_schedule_name
    )
    last_run_status = schedule_details.get("LastMonitoringExecutionSummary", {}).get("MonitoringExecutionStatus")
    last_run_time = schedule_details.get("LastMonitoringExecutionSummary", {}).get("ScheduledTime")
    failure_reason = schedule_details.get("LastMonitoringExecutionSummary", {}).get("FailureReason")
    return {
        "last_run_status": last_run_status,
        "last_run_time": str(last_run_time),
        "failure_reason": failure_reason,
    }

monitoring_schedule_exists()

Code to figure out if a monitoring schedule already exists for this endpoint

Source code in src/workbench/core/artifacts/monitor_core.py
def monitoring_schedule_exists(self):
    """Code to figure out if a monitoring schedule already exists for this endpoint"""
    existing_schedules = self.sagemaker_client.list_monitoring_schedules(MaxResults=100).get(
        "MonitoringScheduleSummaries", []
    )
    if any(schedule["MonitoringScheduleName"] == self.monitoring_schedule_name for schedule in existing_schedules):
        self.log.info(f"Monitoring schedule already exists for {self.endpoint_name}.")
        return True
    else:
        self.log.info(f"Could not find a Monitoring schedule for {self.endpoint_name}.")
        return False

process_captured_data(df) staticmethod

Process the captured data DataFrame to extract and flatten the nested data.

Parameters:

Name Type Description Default
df DataFrame

DataFrame with captured data.

required

Returns:

Name Type Description
DataFrame input), DataFrame(output

Flattened and processed DataFrames for input and output data.

Source code in src/workbench/core/artifacts/monitor_core.py
@staticmethod
def process_captured_data(df: pd.DataFrame) -> (pd.DataFrame, pd.DataFrame):
    """
    Process the captured data DataFrame to extract and flatten the nested data.

    Args:
        df (DataFrame): DataFrame with captured data.

    Returns:
        DataFrame (input), DataFrame(output): Flattened and processed DataFrames for input and output data.
    """
    processed_records = []

    # Phase1: Process the AWS Data Capture format into a flatter DataFrame
    for _, row in df.iterrows():
        # Extract data from captureData dictionary
        capture_data = row["captureData"]
        input_data = capture_data["endpointInput"]
        output_data = capture_data["endpointOutput"]

        # Process input and output, both meta and actual data
        record = {
            "input_content_type": input_data.get("observedContentType"),
            "input_encoding": input_data.get("encoding"),
            "input": input_data.get("data"),
            "output_content_type": output_data.get("observedContentType"),
            "output_encoding": output_data.get("encoding"),
            "output": output_data.get("data"),
        }
        processed_records.append(record)
    processed_df = pd.DataFrame(processed_records)

    # Phase2: Process the input and output 'data' columns into separate DataFrames
    input_df_list = []
    output_df_list = []
    for _, row in processed_df.iterrows():
        input_df = pd.read_csv(StringIO(row["input"]))
        input_df_list.append(input_df)
        output_df = pd.read_csv(StringIO(row["output"]))
        output_df_list.append(output_df)

    # Return the input and output DataFrames
    return pd.concat(input_df_list), pd.concat(output_df_list)

setup_alerts()

Code to set up alerts based on monitoring results

Source code in src/workbench/core/artifacts/monitor_core.py
def setup_alerts(self):
    """Code to set up alerts based on monitoring results"""
    pass

summary()

Return the summary of information about the endpoint monitor

Returns:

Name Type Description
dict dict

Summary of information about the endpoint monitor

Source code in src/workbench/core/artifacts/monitor_core.py
def summary(self) -> dict:
    """Return the summary of information about the endpoint monitor

    Returns:
        dict: Summary of information about the endpoint monitor
    """
    if self.endpoint.is_serverless():
        return {
            "endpoint_type": "serverless",
            "data_capture": "not supported",
            "baseline": "not supported",
            "monitoring_schedule": "not supported",
        }
    else:
        summary = {
            "endpoint_type": "realtime",
            "data_capture": self.is_data_capture_configured(capture_percentage=100),
            "baseline": self.baseline_exists(),
            "monitoring_schedule": self.monitoring_schedule_exists(),
        }
        summary.update(self.last_run_details() or {})
        return summary