Skip to content

FeatureSetCore

API Classes

Found a method here you want to use? The API Classes have method pass-through so just call the method on the FeatureSet API Class and voilà it works the same.

FeatureSet: Workbench Feature Set accessible through Athena

FeatureSetCore

Bases: Artifact

FeatureSetCore: Workbench FeatureSetCore Class

Common Usage
my_features = FeatureSetCore(feature_uuid)
my_features.summary()
my_features.details()
Source code in src/workbench/core/artifacts/feature_set_core.py
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
class FeatureSetCore(Artifact):
    """FeatureSetCore: Workbench FeatureSetCore Class

    Common Usage:
        ```python
        my_features = FeatureSetCore(feature_uuid)
        my_features.summary()
        my_features.details()
        ```
    """

    def __init__(self, feature_set_uuid: str, **kwargs):
        """FeatureSetCore Initialization

        Args:
            feature_set_uuid (str): Name of Feature Set
        """

        # Make sure the feature_set name is valid
        self.is_name_valid(feature_set_uuid)

        # Call superclass init
        super().__init__(feature_set_uuid, **kwargs)

        # Get our FeatureSet metadata
        self.feature_meta = self.meta.feature_set(self.uuid)

        # Sanity check and then set up our FeatureSet attributes
        if self.feature_meta is None:
            self.log.warning(f"Could not find feature set {self.uuid} within current visibility scope")
            self.data_source = None
            return
        else:
            self.id_column = self.feature_meta["RecordIdentifierFeatureName"]
            self.event_time = self.feature_meta["EventTimeFeatureName"]

            # Pull Athena and S3 Storage information from metadata
            self.athena_table = self.feature_meta["workbench_meta"]["athena_table"]
            self.athena_database = self.feature_meta["workbench_meta"]["athena_database"]
            self.s3_storage = self.feature_meta["workbench_meta"].get("s3_storage")

            # Create our internal DataSource (hardcoded to Athena for now)
            self.data_source = AthenaSource(self.athena_table, self.athena_database)

        # Spin up our Feature Store
        self.feature_store = FeatureStore(self.sm_session)

        # Call superclass post_init
        super().__post_init__()

        # All done
        self.log.info(f"FeatureSet Initialized: {self.uuid}...")

    @property
    def table(self) -> str:
        """Get the base table name for this FeatureSet"""
        return self.data_source.table

    def refresh_meta(self):
        """Internal: Refresh our internal AWS Feature Store metadata"""
        self.log.info("Calling refresh_meta() on the underlying DataSource")
        self.data_source.refresh_meta()

    def exists(self) -> bool:
        """Does the feature_set_name exist in the AWS Metadata?"""
        if self.feature_meta is None:
            self.log.debug(f"FeatureSet {self.uuid} not found in AWS Metadata!")
            return False
        return True

    def health_check(self) -> list[str]:
        """Perform a health check on this model

        Returns:
            list[str]: List of health issues
        """
        # Call the base class health check
        health_issues = super().health_check()

        # If we have a 'needs_onboard' in the health check then just return
        if "needs_onboard" in health_issues:
            return health_issues

        # Check our DataSource
        if not self.data_source.exists():
            self.log.critical(f"Data Source check failed for {self.uuid}")
            self.log.critical("Delete this Feature Set and recreate it to fix this issue")
            health_issues.append("data_source_missing")
        return health_issues

    def aws_meta(self) -> dict:
        """Get ALL the AWS metadata for this artifact"""
        return self.feature_meta

    def arn(self) -> str:
        """AWS ARN (Amazon Resource Name) for this artifact"""
        return self.feature_meta["FeatureGroupArn"]

    def size(self) -> float:
        """Return the size of the internal DataSource in MegaBytes"""
        return self.data_source.size()

    @property
    def columns(self) -> list[str]:
        """Return the column names of the Feature Set"""
        return list(self.column_details().keys())

    @property
    def column_types(self) -> list[str]:
        """Return the column types of the Feature Set"""
        return list(self.column_details().values())

    def column_details(self) -> dict:
        """Return the column details of the Feature Set

        Returns:
            dict: The column details of the Feature Set

        Notes:
            We can't call just call self.data_source.column_details() because FeatureSets have different
            types, so we need to overlay that type information on top of the DataSource type information
        """
        fs_details = {item["FeatureName"]: item["FeatureType"] for item in self.feature_meta["FeatureDefinitions"]}
        ds_details = self.data_source.column_details()

        # Overlay the FeatureSet type information on top of the DataSource type information
        for col, dtype in ds_details.items():
            ds_details[col] = fs_details.get(col, dtype)
        return ds_details

    def views(self) -> list[str]:
        """Return the views for this Data Source"""
        from workbench.core.views.view_utils import list_views

        return list_views(self.data_source)

    def view(self, view_name: str) -> "View":
        """Return a DataFrame for a specific view
        Args:
            view_name (str): The name of the view to return
        Returns:
            pd.DataFrame: A DataFrame for the specified view
        """
        from workbench.core.views import View

        return View(self, view_name)

    def set_display_columns(self, diplay_columns: list[str]):
        """Set the display columns for this Data Source

        Args:
            diplay_columns (list[str]): The display columns for this Data Source
        """
        # Check mismatch of display columns to computation columns
        c_view = self.view("computation")
        computation_columns = c_view.columns
        mismatch_columns = [col for col in diplay_columns if col not in computation_columns]
        if mismatch_columns:
            self.log.monitor(f"Display View/Computation mismatch: {mismatch_columns}")

        self.log.important(f"Setting Display Columns...{diplay_columns}")
        from workbench.core.views import DisplayView

        # Create a NEW display view
        DisplayView.create(self, source_table=c_view.table, column_list=diplay_columns)

    def set_computation_columns(self, computation_columns: list[str], reset_display: bool = True):
        """Set the computation columns for this FeatureSet

        Args:
            computation_columns (list[str]): The computation columns for this FeatureSet
            reset_display (bool): Also reset the display columns to match (default: True)
        """
        self.log.important(f"Setting Computation Columns...{computation_columns}")
        from workbench.core.views import ComputationView

        # Create a NEW computation view
        ComputationView.create(self, column_list=computation_columns)
        self.recompute_stats()

        # Reset the display columns to match the computation columns
        if reset_display:
            self.set_display_columns(computation_columns)

    def num_columns(self) -> int:
        """Return the number of columns of the Feature Set"""
        return len(self.columns)

    def num_rows(self) -> int:
        """Return the number of rows of the internal DataSource"""
        return self.data_source.num_rows()

    def query(self, query: str, overwrite: bool = True) -> pd.DataFrame:
        """Query the internal DataSource

        Args:
            query (str): The query to run against the DataSource
            overwrite (bool): Overwrite the table name in the query (default: True)

        Returns:
            pd.DataFrame: The results of the query
        """
        if overwrite:
            query = query.replace(" " + self.uuid + " ", " " + self.athena_table + " ")
        return self.data_source.query(query)

    def aws_url(self):
        """The AWS URL for looking at/querying the underlying data source"""
        workbench_details = self.data_source.workbench_meta().get("workbench_details", {})
        return workbench_details.get("aws_url", "unknown")

    def created(self) -> datetime:
        """Return the datetime when this artifact was created"""
        return self.feature_meta["CreationTime"]

    def modified(self) -> datetime:
        """Return the datetime when this artifact was last modified"""
        # Note: We can't currently figure out how to this from AWS Metadata
        return self.feature_meta["CreationTime"]

    def hash(self) -> str:
        """Return the hash for the set of Parquet files for this artifact"""
        return self.data_source.hash()

    def table_hash(self) -> str:
        """Return the hash for the Athena table"""
        return self.data_source.table_hash()

    def get_data_source(self) -> DataSourceFactory:
        """Return the underlying DataSource object"""
        return self.data_source

    def get_feature_store(self) -> FeatureStore:
        """Return the underlying AWS FeatureStore object. This can be useful for more advanced usage
        with create_dataset() such as Joins and time ranges and a host of other options
        See: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html
        """
        return self.feature_store

    def create_s3_training_data(self) -> str:
        """Create some Training Data (S3 CSV) from a Feature Set using standard options. If you want
        additional options/features use the get_feature_store() method and see AWS docs for all
        the details: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html
        Returns:
            str: The full path/file for the CSV file created by Feature Store create_dataset()
        """

        # Set up the S3 Query results path
        date_time = datetime.now(timezone.utc).strftime("%Y-%m-%d_%H:%M:%S")
        s3_output_path = self.feature_sets_s3_path + f"/{self.uuid}/datasets/all_{date_time}"

        # Make the query
        table = self.view("training").table
        query = f'SELECT * FROM "{table}"'
        athena_query = FeatureGroup(name=self.uuid, sagemaker_session=self.sm_session).athena_query()
        athena_query.run(query, output_location=s3_output_path)
        athena_query.wait()
        query_execution = athena_query.get_query_execution()

        # Get the full path to the S3 files with the results
        full_s3_path = s3_output_path + f"/{query_execution['QueryExecution']['QueryExecutionId']}.csv"
        return full_s3_path

    def get_training_data(self) -> pd.DataFrame:
        """Get the training data for this FeatureSet

        Returns:
            pd.DataFrame: The training data for this FeatureSet
        """
        from workbench.core.views.view import View

        return View(self, "training").pull_dataframe()

    def snapshot_query(self, table_name: str = None) -> str:
        """An Athena query to get the latest snapshot of features

        Args:
            table_name (str): The name of the table to query (default: None)

        Returns:
            str: The Athena query to get the latest snapshot of features
        """
        # Remove FeatureGroup metadata columns that might have gotten added
        columns = self.columns
        filter_columns = ["write_time", "api_invocation_time", "is_deleted"]
        columns = ", ".join(['"' + x + '"' for x in columns if x not in filter_columns])

        query = (
            f"SELECT {columns} "
            f"    FROM (SELECT *, row_number() OVER (PARTITION BY {self.id_column} "
            f"        ORDER BY {self.event_time} desc, api_invocation_time DESC, write_time DESC) AS row_num "
            f'        FROM "{table_name}") '
            "    WHERE row_num = 1 and NOT is_deleted;"
        )
        return query

    def details(self, recompute: bool = False) -> dict[dict]:
        """Additional Details about this FeatureSet Artifact

        Args:
            recompute (bool): Recompute the details (default: False)

        Returns:
            dict(dict): A dictionary of details about this FeatureSet
        """

        self.log.info(f"Computing FeatureSet Details ({self.uuid})...")
        details = self.summary()
        details["aws_url"] = self.aws_url()

        # Store the AWS URL in the Workbench Metadata
        # FIXME: We need to revisit this but doing an upsert just for aws_url is silly
        # self.upsert_workbench_meta({"aws_url": details["aws_url"]})

        # Now get a summary of the underlying DataSource
        details["storage_summary"] = self.data_source.summary()

        # Number of Columns
        details["num_columns"] = self.num_columns()

        # Number of Rows
        details["num_rows"] = self.num_rows()

        # Additional Details
        details["workbench_status"] = self.get_status()
        details["workbench_input"] = self.get_input()
        details["workbench_tags"] = self.tag_delimiter.join(self.get_tags())

        # Underlying Storage Details
        details["storage_type"] = "athena"  # TODO: Add RDS support
        details["storage_uuid"] = self.data_source.uuid

        # Add the column details and column stats
        details["column_details"] = self.column_details()
        details["column_stats"] = self.column_stats()

        # Return the details data
        return details

    def delete(self):
        """Instance Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects"""
        # Make sure the AthenaSource exists
        if not self.exists():
            self.log.warning(f"Trying to delete an FeatureSet that doesn't exist: {self.uuid}")

        # Call the Class Method to delete the FeatureSet
        FeatureSetCore.managed_delete(self.uuid)

    @classmethod
    def managed_delete(cls, feature_set_name: str):
        """Class Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects

        Args:
            feature_set_name (str): The Name of the FeatureSet to delete
        """

        # See if the FeatureSet exists
        try:
            response = cls.sm_client.describe_feature_group(FeatureGroupName=feature_set_name)
        except cls.sm_client.exceptions.ResourceNotFound:
            cls.log.info(f"FeatureSet {feature_set_name} not found!")
            return

        # Extract database and table information from the response
        offline_config = response.get("OfflineStoreConfig", {})
        database = offline_config.get("DataCatalogConfig", {}).get("Database")
        offline_table = offline_config.get("DataCatalogConfig", {}).get("TableName")
        data_source_uuid = offline_table  # Our offline storage IS a DataSource

        # Delete the Feature Group and ensure that it gets deleted
        cls.log.important(f"Deleting FeatureSet {feature_set_name}...")
        remove_fg = cls.aws_feature_group_delete(feature_set_name)
        cls.ensure_feature_group_deleted(remove_fg)

        # Delete our underlying DataSource (Data Catalog Table and S3 Storage Objects)
        AthenaSource.managed_delete(data_source_uuid, database=database)

        # Delete any views associated with this FeatureSet
        cls.delete_views(offline_table, database)

        # Feature Sets can often have a lot of cruft so delete the entire bucket/prefix
        s3_delete_path = cls.feature_sets_s3_path + f"/{feature_set_name}/"
        cls.log.info(f"Deleting All FeatureSet S3 Storage Objects {s3_delete_path}")
        wr.s3.delete_objects(s3_delete_path, boto3_session=cls.boto3_session)

        # Delete any dataframes that were stored in the Dataframe Cache
        cls.log.info("Deleting Dataframe Cache...")
        cls.df_cache.delete_recursive(feature_set_name)

    @classmethod
    @aws_throttle
    def aws_feature_group_delete(cls, feature_set_name):
        remove_fg = FeatureGroup(name=feature_set_name, sagemaker_session=cls.sm_session)
        remove_fg.delete()
        return remove_fg

    @classmethod
    def ensure_feature_group_deleted(cls, feature_group):
        status = "Deleting"
        while status == "Deleting":
            cls.log.debug("FeatureSet being Deleted...")
            try:
                status = feature_group.describe().get("FeatureGroupStatus")
            except botocore.exceptions.ClientError as error:
                # For ResourceNotFound/ValidationException, this is fine, otherwise raise all other exceptions
                if error.response["Error"]["Code"] in ["ResourceNotFound", "ValidationException"]:
                    break
                else:
                    raise error
            time.sleep(1)
        cls.log.info(f"FeatureSet {feature_group.name} successfully deleted")

    def set_training_holdouts(self, id_column: str, holdout_ids: list[str]):
        """Set the hold out ids for the training view for this FeatureSet

        Args:
            id_column (str): The name of the id column.
            holdout_ids (list[str]): The list of holdout ids.
        """
        from workbench.core.views import TrainingView

        # Create a NEW training view
        self.log.important(f"Setting Training Holdouts: {len(holdout_ids)} ids...")
        TrainingView.create(self, id_column=id_column, holdout_ids=holdout_ids)

    @classmethod
    def delete_views(cls, table: str, database: str):
        """Delete any views associated with this FeatureSet

        Args:
            table (str): Name of Athena Table
            database (str): Athena Database Name
        """
        from workbench.core.views.view_utils import delete_views_and_supplemental_data

        delete_views_and_supplemental_data(table, database, cls.boto3_session)

    def descriptive_stats(self, recompute: bool = False) -> dict:
        """Get the descriptive stats for the numeric columns of the underlying DataSource
        Args:
            recompute (bool): Recompute the descriptive stats (default=False)
        Returns:
            dict: A dictionary of descriptive stats for the numeric columns
        """
        return self.data_source.descriptive_stats(recompute)

    def sample(self, recompute: bool = False) -> pd.DataFrame:
        """Get a sample of the data from the underlying DataSource
        Args:
            recompute (bool): Recompute the sample (default=False)
        Returns:
            pd.DataFrame: A sample of the data from the underlying DataSource
        """
        return self.data_source.sample(recompute)

    def outliers(self, scale: float = 1.5, recompute: bool = False) -> pd.DataFrame:
        """Compute outliers for all the numeric columns in a DataSource
        Args:
            scale (float): The scale to use for the IQR (default: 1.5)
            recompute (bool): Recompute the outliers (default: False)
        Returns:
            pd.DataFrame: A DataFrame of outliers from this DataSource
        Notes:
            Uses the IQR * 1.5 (~= 2.5 Sigma) method to compute outliers
            The scale parameter can be adjusted to change the IQR multiplier
        """
        return self.data_source.outliers(scale=scale, recompute=recompute)

    def smart_sample(self, recompute: bool = False) -> pd.DataFrame:
        """Get a SMART sample dataframe from this FeatureSet

        Args:
            recompute (bool): Recompute the smart sample (default=False)

        Returns:
            pd.DataFrame: A combined DataFrame of sample data + outliers
        """
        return self.data_source.smart_sample(recompute=recompute)

    def anomalies(self) -> pd.DataFrame:
        """Get a set of anomalous data from the underlying DataSource
        Returns:
            pd.DataFrame: A dataframe of anomalies from the underlying DataSource
        """

        # FIXME: Mock this for now
        anom_df = self.sample().copy()
        anom_df["anomaly_score"] = np.random.rand(anom_df.shape[0])
        anom_df["cluster"] = np.random.randint(0, 10, anom_df.shape[0])
        anom_df["x"] = np.random.rand(anom_df.shape[0])
        anom_df["y"] = np.random.rand(anom_df.shape[0])
        return anom_df

    def value_counts(self, recompute: bool = False) -> dict:
        """Get the value counts for the string columns of the underlying DataSource
        Args:
            recompute (bool): Recompute the value counts (default=False)
        Returns:
            dict: A dictionary of value counts for the string columns
        """
        return self.data_source.value_counts(recompute)

    def correlations(self, recompute: bool = False) -> dict:
        """Get the correlations for the numeric columns of the underlying DataSource
        Args:
            recompute (bool): Recompute the value counts (default=False)
        Returns:
            dict: A dictionary of correlations for the numeric columns
        """
        return self.data_source.correlations(recompute)

    def column_stats(self, recompute: bool = False) -> dict[dict]:
        """Compute Column Stats for all the columns in the FeatureSets underlying DataSource
        Args:
            recompute (bool): Recompute the column stats (default: False)
        Returns:
            dict(dict): A dictionary of stats for each column this format
            NB: String columns will NOT have num_zeros and descriptive_stats
             {'col1': {'dtype': 'string', 'unique': 4321, 'nulls': 12},
              'col2': {'dtype': 'int', 'unique': 4321, 'nulls': 12, 'num_zeros': 100, 'descriptive_stats': {...}},
              ...}
        """

        # Grab the column stats from our DataSource
        ds_column_stats = self.data_source.column_stats(recompute)

        # Map the types from our DataSource to the FeatureSet types
        fs_type_mapper = self.column_details()
        for col, details in ds_column_stats.items():
            details["fs_dtype"] = fs_type_mapper.get(col, "unknown")

        return ds_column_stats

    def ready(self) -> bool:
        """Is the FeatureSet ready? Is initial setup complete and expected metadata populated?
        Note: Since FeatureSet is a composite of DataSource and FeatureGroup, we need to
           check both to see if the FeatureSet is ready."""

        # Check the expected metadata for the FeatureSet
        expected_meta = self.expected_meta()
        existing_meta = self.workbench_meta()
        feature_set_ready = set(existing_meta.keys()).issuperset(expected_meta)
        if not feature_set_ready:
            self.log.info(f"FeatureSet {self.uuid} is not ready!")
            return False

        # Okay now call/return the DataSource ready() method
        return self.data_source.ready()

    def onboard(self) -> bool:
        """This is a BLOCKING method that will onboard the FeatureSet (make it ready)"""

        # Set our status to onboarding
        self.log.important(f"Onboarding {self.uuid}...")
        self.set_status("onboarding")
        self.remove_health_tag("needs_onboard")

        # Call our underlying DataSource onboard method
        self.data_source.refresh_meta()
        if not self.data_source.exists():
            self.log.critical(f"Data Source check failed for {self.uuid}")
            self.log.critical("Delete this Feature Set and recreate it to fix this issue")
            return False
        if not self.data_source.ready():
            self.data_source.onboard()

        # Run a health check and refresh the meta
        time.sleep(2)  # Give the AWS Metadata a chance to update
        self.health_check()
        self.refresh_meta()
        self.details(recompute=True)
        self.set_status("ready")
        return True

    def recompute_stats(self) -> bool:
        """This is a BLOCKING method that will recompute the stats for the FeatureSet"""

        # Call our underlying DataSource recompute stats method
        self.log.important(f"Recomputing Stats {self.uuid}...")
        self.data_source.recompute_stats()
        self.details(recompute=True)
        return True

column_types: list[str] property

Return the column types of the Feature Set

columns: list[str] property

Return the column names of the Feature Set

table: str property

Get the base table name for this FeatureSet

__init__(feature_set_uuid, **kwargs)

FeatureSetCore Initialization

Parameters:

Name Type Description Default
feature_set_uuid str

Name of Feature Set

required
Source code in src/workbench/core/artifacts/feature_set_core.py
def __init__(self, feature_set_uuid: str, **kwargs):
    """FeatureSetCore Initialization

    Args:
        feature_set_uuid (str): Name of Feature Set
    """

    # Make sure the feature_set name is valid
    self.is_name_valid(feature_set_uuid)

    # Call superclass init
    super().__init__(feature_set_uuid, **kwargs)

    # Get our FeatureSet metadata
    self.feature_meta = self.meta.feature_set(self.uuid)

    # Sanity check and then set up our FeatureSet attributes
    if self.feature_meta is None:
        self.log.warning(f"Could not find feature set {self.uuid} within current visibility scope")
        self.data_source = None
        return
    else:
        self.id_column = self.feature_meta["RecordIdentifierFeatureName"]
        self.event_time = self.feature_meta["EventTimeFeatureName"]

        # Pull Athena and S3 Storage information from metadata
        self.athena_table = self.feature_meta["workbench_meta"]["athena_table"]
        self.athena_database = self.feature_meta["workbench_meta"]["athena_database"]
        self.s3_storage = self.feature_meta["workbench_meta"].get("s3_storage")

        # Create our internal DataSource (hardcoded to Athena for now)
        self.data_source = AthenaSource(self.athena_table, self.athena_database)

    # Spin up our Feature Store
    self.feature_store = FeatureStore(self.sm_session)

    # Call superclass post_init
    super().__post_init__()

    # All done
    self.log.info(f"FeatureSet Initialized: {self.uuid}...")

anomalies()

Get a set of anomalous data from the underlying DataSource Returns: pd.DataFrame: A dataframe of anomalies from the underlying DataSource

Source code in src/workbench/core/artifacts/feature_set_core.py
def anomalies(self) -> pd.DataFrame:
    """Get a set of anomalous data from the underlying DataSource
    Returns:
        pd.DataFrame: A dataframe of anomalies from the underlying DataSource
    """

    # FIXME: Mock this for now
    anom_df = self.sample().copy()
    anom_df["anomaly_score"] = np.random.rand(anom_df.shape[0])
    anom_df["cluster"] = np.random.randint(0, 10, anom_df.shape[0])
    anom_df["x"] = np.random.rand(anom_df.shape[0])
    anom_df["y"] = np.random.rand(anom_df.shape[0])
    return anom_df

arn()

AWS ARN (Amazon Resource Name) for this artifact

Source code in src/workbench/core/artifacts/feature_set_core.py
def arn(self) -> str:
    """AWS ARN (Amazon Resource Name) for this artifact"""
    return self.feature_meta["FeatureGroupArn"]

aws_meta()

Get ALL the AWS metadata for this artifact

Source code in src/workbench/core/artifacts/feature_set_core.py
def aws_meta(self) -> dict:
    """Get ALL the AWS metadata for this artifact"""
    return self.feature_meta

aws_url()

The AWS URL for looking at/querying the underlying data source

Source code in src/workbench/core/artifacts/feature_set_core.py
def aws_url(self):
    """The AWS URL for looking at/querying the underlying data source"""
    workbench_details = self.data_source.workbench_meta().get("workbench_details", {})
    return workbench_details.get("aws_url", "unknown")

column_details()

Return the column details of the Feature Set

Returns:

Name Type Description
dict dict

The column details of the Feature Set

Notes

We can't call just call self.data_source.column_details() because FeatureSets have different types, so we need to overlay that type information on top of the DataSource type information

Source code in src/workbench/core/artifacts/feature_set_core.py
def column_details(self) -> dict:
    """Return the column details of the Feature Set

    Returns:
        dict: The column details of the Feature Set

    Notes:
        We can't call just call self.data_source.column_details() because FeatureSets have different
        types, so we need to overlay that type information on top of the DataSource type information
    """
    fs_details = {item["FeatureName"]: item["FeatureType"] for item in self.feature_meta["FeatureDefinitions"]}
    ds_details = self.data_source.column_details()

    # Overlay the FeatureSet type information on top of the DataSource type information
    for col, dtype in ds_details.items():
        ds_details[col] = fs_details.get(col, dtype)
    return ds_details

column_stats(recompute=False)

Compute Column Stats for all the columns in the FeatureSets underlying DataSource Args: recompute (bool): Recompute the column stats (default: False) Returns: dict(dict): A dictionary of stats for each column this format NB: String columns will NOT have num_zeros and descriptive_stats {'col1': {'dtype': 'string', 'unique': 4321, 'nulls': 12}, 'col2': {'dtype': 'int', 'unique': 4321, 'nulls': 12, 'num_zeros': 100, 'descriptive_stats': {...}}, ...}

Source code in src/workbench/core/artifacts/feature_set_core.py
def column_stats(self, recompute: bool = False) -> dict[dict]:
    """Compute Column Stats for all the columns in the FeatureSets underlying DataSource
    Args:
        recompute (bool): Recompute the column stats (default: False)
    Returns:
        dict(dict): A dictionary of stats for each column this format
        NB: String columns will NOT have num_zeros and descriptive_stats
         {'col1': {'dtype': 'string', 'unique': 4321, 'nulls': 12},
          'col2': {'dtype': 'int', 'unique': 4321, 'nulls': 12, 'num_zeros': 100, 'descriptive_stats': {...}},
          ...}
    """

    # Grab the column stats from our DataSource
    ds_column_stats = self.data_source.column_stats(recompute)

    # Map the types from our DataSource to the FeatureSet types
    fs_type_mapper = self.column_details()
    for col, details in ds_column_stats.items():
        details["fs_dtype"] = fs_type_mapper.get(col, "unknown")

    return ds_column_stats

correlations(recompute=False)

Get the correlations for the numeric columns of the underlying DataSource Args: recompute (bool): Recompute the value counts (default=False) Returns: dict: A dictionary of correlations for the numeric columns

Source code in src/workbench/core/artifacts/feature_set_core.py
def correlations(self, recompute: bool = False) -> dict:
    """Get the correlations for the numeric columns of the underlying DataSource
    Args:
        recompute (bool): Recompute the value counts (default=False)
    Returns:
        dict: A dictionary of correlations for the numeric columns
    """
    return self.data_source.correlations(recompute)

create_s3_training_data()

Create some Training Data (S3 CSV) from a Feature Set using standard options. If you want additional options/features use the get_feature_store() method and see AWS docs for all the details: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html Returns: str: The full path/file for the CSV file created by Feature Store create_dataset()

Source code in src/workbench/core/artifacts/feature_set_core.py
def create_s3_training_data(self) -> str:
    """Create some Training Data (S3 CSV) from a Feature Set using standard options. If you want
    additional options/features use the get_feature_store() method and see AWS docs for all
    the details: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html
    Returns:
        str: The full path/file for the CSV file created by Feature Store create_dataset()
    """

    # Set up the S3 Query results path
    date_time = datetime.now(timezone.utc).strftime("%Y-%m-%d_%H:%M:%S")
    s3_output_path = self.feature_sets_s3_path + f"/{self.uuid}/datasets/all_{date_time}"

    # Make the query
    table = self.view("training").table
    query = f'SELECT * FROM "{table}"'
    athena_query = FeatureGroup(name=self.uuid, sagemaker_session=self.sm_session).athena_query()
    athena_query.run(query, output_location=s3_output_path)
    athena_query.wait()
    query_execution = athena_query.get_query_execution()

    # Get the full path to the S3 files with the results
    full_s3_path = s3_output_path + f"/{query_execution['QueryExecution']['QueryExecutionId']}.csv"
    return full_s3_path

created()

Return the datetime when this artifact was created

Source code in src/workbench/core/artifacts/feature_set_core.py
def created(self) -> datetime:
    """Return the datetime when this artifact was created"""
    return self.feature_meta["CreationTime"]

delete()

Instance Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects

Source code in src/workbench/core/artifacts/feature_set_core.py
def delete(self):
    """Instance Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects"""
    # Make sure the AthenaSource exists
    if not self.exists():
        self.log.warning(f"Trying to delete an FeatureSet that doesn't exist: {self.uuid}")

    # Call the Class Method to delete the FeatureSet
    FeatureSetCore.managed_delete(self.uuid)

delete_views(table, database) classmethod

Delete any views associated with this FeatureSet

Parameters:

Name Type Description Default
table str

Name of Athena Table

required
database str

Athena Database Name

required
Source code in src/workbench/core/artifacts/feature_set_core.py
@classmethod
def delete_views(cls, table: str, database: str):
    """Delete any views associated with this FeatureSet

    Args:
        table (str): Name of Athena Table
        database (str): Athena Database Name
    """
    from workbench.core.views.view_utils import delete_views_and_supplemental_data

    delete_views_and_supplemental_data(table, database, cls.boto3_session)

descriptive_stats(recompute=False)

Get the descriptive stats for the numeric columns of the underlying DataSource Args: recompute (bool): Recompute the descriptive stats (default=False) Returns: dict: A dictionary of descriptive stats for the numeric columns

Source code in src/workbench/core/artifacts/feature_set_core.py
def descriptive_stats(self, recompute: bool = False) -> dict:
    """Get the descriptive stats for the numeric columns of the underlying DataSource
    Args:
        recompute (bool): Recompute the descriptive stats (default=False)
    Returns:
        dict: A dictionary of descriptive stats for the numeric columns
    """
    return self.data_source.descriptive_stats(recompute)

details(recompute=False)

Additional Details about this FeatureSet Artifact

Parameters:

Name Type Description Default
recompute bool

Recompute the details (default: False)

False

Returns:

Name Type Description
dict dict

A dictionary of details about this FeatureSet

Source code in src/workbench/core/artifacts/feature_set_core.py
def details(self, recompute: bool = False) -> dict[dict]:
    """Additional Details about this FeatureSet Artifact

    Args:
        recompute (bool): Recompute the details (default: False)

    Returns:
        dict(dict): A dictionary of details about this FeatureSet
    """

    self.log.info(f"Computing FeatureSet Details ({self.uuid})...")
    details = self.summary()
    details["aws_url"] = self.aws_url()

    # Store the AWS URL in the Workbench Metadata
    # FIXME: We need to revisit this but doing an upsert just for aws_url is silly
    # self.upsert_workbench_meta({"aws_url": details["aws_url"]})

    # Now get a summary of the underlying DataSource
    details["storage_summary"] = self.data_source.summary()

    # Number of Columns
    details["num_columns"] = self.num_columns()

    # Number of Rows
    details["num_rows"] = self.num_rows()

    # Additional Details
    details["workbench_status"] = self.get_status()
    details["workbench_input"] = self.get_input()
    details["workbench_tags"] = self.tag_delimiter.join(self.get_tags())

    # Underlying Storage Details
    details["storage_type"] = "athena"  # TODO: Add RDS support
    details["storage_uuid"] = self.data_source.uuid

    # Add the column details and column stats
    details["column_details"] = self.column_details()
    details["column_stats"] = self.column_stats()

    # Return the details data
    return details

exists()

Does the feature_set_name exist in the AWS Metadata?

Source code in src/workbench/core/artifacts/feature_set_core.py
def exists(self) -> bool:
    """Does the feature_set_name exist in the AWS Metadata?"""
    if self.feature_meta is None:
        self.log.debug(f"FeatureSet {self.uuid} not found in AWS Metadata!")
        return False
    return True

get_data_source()

Return the underlying DataSource object

Source code in src/workbench/core/artifacts/feature_set_core.py
def get_data_source(self) -> DataSourceFactory:
    """Return the underlying DataSource object"""
    return self.data_source

get_feature_store()

Return the underlying AWS FeatureStore object. This can be useful for more advanced usage with create_dataset() such as Joins and time ranges and a host of other options See: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html

Source code in src/workbench/core/artifacts/feature_set_core.py
def get_feature_store(self) -> FeatureStore:
    """Return the underlying AWS FeatureStore object. This can be useful for more advanced usage
    with create_dataset() such as Joins and time ranges and a host of other options
    See: https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-create-a-dataset.html
    """
    return self.feature_store

get_training_data()

Get the training data for this FeatureSet

Returns:

Type Description
DataFrame

pd.DataFrame: The training data for this FeatureSet

Source code in src/workbench/core/artifacts/feature_set_core.py
def get_training_data(self) -> pd.DataFrame:
    """Get the training data for this FeatureSet

    Returns:
        pd.DataFrame: The training data for this FeatureSet
    """
    from workbench.core.views.view import View

    return View(self, "training").pull_dataframe()

hash()

Return the hash for the set of Parquet files for this artifact

Source code in src/workbench/core/artifacts/feature_set_core.py
def hash(self) -> str:
    """Return the hash for the set of Parquet files for this artifact"""
    return self.data_source.hash()

health_check()

Perform a health check on this model

Returns:

Type Description
list[str]

list[str]: List of health issues

Source code in src/workbench/core/artifacts/feature_set_core.py
def health_check(self) -> list[str]:
    """Perform a health check on this model

    Returns:
        list[str]: List of health issues
    """
    # Call the base class health check
    health_issues = super().health_check()

    # If we have a 'needs_onboard' in the health check then just return
    if "needs_onboard" in health_issues:
        return health_issues

    # Check our DataSource
    if not self.data_source.exists():
        self.log.critical(f"Data Source check failed for {self.uuid}")
        self.log.critical("Delete this Feature Set and recreate it to fix this issue")
        health_issues.append("data_source_missing")
    return health_issues

managed_delete(feature_set_name) classmethod

Class Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects

Parameters:

Name Type Description Default
feature_set_name str

The Name of the FeatureSet to delete

required
Source code in src/workbench/core/artifacts/feature_set_core.py
@classmethod
def managed_delete(cls, feature_set_name: str):
    """Class Method: Delete the Feature Set: Feature Group, Catalog Table, and S3 Storage Objects

    Args:
        feature_set_name (str): The Name of the FeatureSet to delete
    """

    # See if the FeatureSet exists
    try:
        response = cls.sm_client.describe_feature_group(FeatureGroupName=feature_set_name)
    except cls.sm_client.exceptions.ResourceNotFound:
        cls.log.info(f"FeatureSet {feature_set_name} not found!")
        return

    # Extract database and table information from the response
    offline_config = response.get("OfflineStoreConfig", {})
    database = offline_config.get("DataCatalogConfig", {}).get("Database")
    offline_table = offline_config.get("DataCatalogConfig", {}).get("TableName")
    data_source_uuid = offline_table  # Our offline storage IS a DataSource

    # Delete the Feature Group and ensure that it gets deleted
    cls.log.important(f"Deleting FeatureSet {feature_set_name}...")
    remove_fg = cls.aws_feature_group_delete(feature_set_name)
    cls.ensure_feature_group_deleted(remove_fg)

    # Delete our underlying DataSource (Data Catalog Table and S3 Storage Objects)
    AthenaSource.managed_delete(data_source_uuid, database=database)

    # Delete any views associated with this FeatureSet
    cls.delete_views(offline_table, database)

    # Feature Sets can often have a lot of cruft so delete the entire bucket/prefix
    s3_delete_path = cls.feature_sets_s3_path + f"/{feature_set_name}/"
    cls.log.info(f"Deleting All FeatureSet S3 Storage Objects {s3_delete_path}")
    wr.s3.delete_objects(s3_delete_path, boto3_session=cls.boto3_session)

    # Delete any dataframes that were stored in the Dataframe Cache
    cls.log.info("Deleting Dataframe Cache...")
    cls.df_cache.delete_recursive(feature_set_name)

modified()

Return the datetime when this artifact was last modified

Source code in src/workbench/core/artifacts/feature_set_core.py
def modified(self) -> datetime:
    """Return the datetime when this artifact was last modified"""
    # Note: We can't currently figure out how to this from AWS Metadata
    return self.feature_meta["CreationTime"]

num_columns()

Return the number of columns of the Feature Set

Source code in src/workbench/core/artifacts/feature_set_core.py
def num_columns(self) -> int:
    """Return the number of columns of the Feature Set"""
    return len(self.columns)

num_rows()

Return the number of rows of the internal DataSource

Source code in src/workbench/core/artifacts/feature_set_core.py
def num_rows(self) -> int:
    """Return the number of rows of the internal DataSource"""
    return self.data_source.num_rows()

onboard()

This is a BLOCKING method that will onboard the FeatureSet (make it ready)

Source code in src/workbench/core/artifacts/feature_set_core.py
def onboard(self) -> bool:
    """This is a BLOCKING method that will onboard the FeatureSet (make it ready)"""

    # Set our status to onboarding
    self.log.important(f"Onboarding {self.uuid}...")
    self.set_status("onboarding")
    self.remove_health_tag("needs_onboard")

    # Call our underlying DataSource onboard method
    self.data_source.refresh_meta()
    if not self.data_source.exists():
        self.log.critical(f"Data Source check failed for {self.uuid}")
        self.log.critical("Delete this Feature Set and recreate it to fix this issue")
        return False
    if not self.data_source.ready():
        self.data_source.onboard()

    # Run a health check and refresh the meta
    time.sleep(2)  # Give the AWS Metadata a chance to update
    self.health_check()
    self.refresh_meta()
    self.details(recompute=True)
    self.set_status("ready")
    return True

outliers(scale=1.5, recompute=False)

Compute outliers for all the numeric columns in a DataSource Args: scale (float): The scale to use for the IQR (default: 1.5) recompute (bool): Recompute the outliers (default: False) Returns: pd.DataFrame: A DataFrame of outliers from this DataSource Notes: Uses the IQR * 1.5 (~= 2.5 Sigma) method to compute outliers The scale parameter can be adjusted to change the IQR multiplier

Source code in src/workbench/core/artifacts/feature_set_core.py
def outliers(self, scale: float = 1.5, recompute: bool = False) -> pd.DataFrame:
    """Compute outliers for all the numeric columns in a DataSource
    Args:
        scale (float): The scale to use for the IQR (default: 1.5)
        recompute (bool): Recompute the outliers (default: False)
    Returns:
        pd.DataFrame: A DataFrame of outliers from this DataSource
    Notes:
        Uses the IQR * 1.5 (~= 2.5 Sigma) method to compute outliers
        The scale parameter can be adjusted to change the IQR multiplier
    """
    return self.data_source.outliers(scale=scale, recompute=recompute)

query(query, overwrite=True)

Query the internal DataSource

Parameters:

Name Type Description Default
query str

The query to run against the DataSource

required
overwrite bool

Overwrite the table name in the query (default: True)

True

Returns:

Type Description
DataFrame

pd.DataFrame: The results of the query

Source code in src/workbench/core/artifacts/feature_set_core.py
def query(self, query: str, overwrite: bool = True) -> pd.DataFrame:
    """Query the internal DataSource

    Args:
        query (str): The query to run against the DataSource
        overwrite (bool): Overwrite the table name in the query (default: True)

    Returns:
        pd.DataFrame: The results of the query
    """
    if overwrite:
        query = query.replace(" " + self.uuid + " ", " " + self.athena_table + " ")
    return self.data_source.query(query)

ready()

Is the FeatureSet ready? Is initial setup complete and expected metadata populated? Note: Since FeatureSet is a composite of DataSource and FeatureGroup, we need to check both to see if the FeatureSet is ready.

Source code in src/workbench/core/artifacts/feature_set_core.py
def ready(self) -> bool:
    """Is the FeatureSet ready? Is initial setup complete and expected metadata populated?
    Note: Since FeatureSet is a composite of DataSource and FeatureGroup, we need to
       check both to see if the FeatureSet is ready."""

    # Check the expected metadata for the FeatureSet
    expected_meta = self.expected_meta()
    existing_meta = self.workbench_meta()
    feature_set_ready = set(existing_meta.keys()).issuperset(expected_meta)
    if not feature_set_ready:
        self.log.info(f"FeatureSet {self.uuid} is not ready!")
        return False

    # Okay now call/return the DataSource ready() method
    return self.data_source.ready()

recompute_stats()

This is a BLOCKING method that will recompute the stats for the FeatureSet

Source code in src/workbench/core/artifacts/feature_set_core.py
def recompute_stats(self) -> bool:
    """This is a BLOCKING method that will recompute the stats for the FeatureSet"""

    # Call our underlying DataSource recompute stats method
    self.log.important(f"Recomputing Stats {self.uuid}...")
    self.data_source.recompute_stats()
    self.details(recompute=True)
    return True

refresh_meta()

Internal: Refresh our internal AWS Feature Store metadata

Source code in src/workbench/core/artifacts/feature_set_core.py
def refresh_meta(self):
    """Internal: Refresh our internal AWS Feature Store metadata"""
    self.log.info("Calling refresh_meta() on the underlying DataSource")
    self.data_source.refresh_meta()

sample(recompute=False)

Get a sample of the data from the underlying DataSource Args: recompute (bool): Recompute the sample (default=False) Returns: pd.DataFrame: A sample of the data from the underlying DataSource

Source code in src/workbench/core/artifacts/feature_set_core.py
def sample(self, recompute: bool = False) -> pd.DataFrame:
    """Get a sample of the data from the underlying DataSource
    Args:
        recompute (bool): Recompute the sample (default=False)
    Returns:
        pd.DataFrame: A sample of the data from the underlying DataSource
    """
    return self.data_source.sample(recompute)

set_computation_columns(computation_columns, reset_display=True)

Set the computation columns for this FeatureSet

Parameters:

Name Type Description Default
computation_columns list[str]

The computation columns for this FeatureSet

required
reset_display bool

Also reset the display columns to match (default: True)

True
Source code in src/workbench/core/artifacts/feature_set_core.py
def set_computation_columns(self, computation_columns: list[str], reset_display: bool = True):
    """Set the computation columns for this FeatureSet

    Args:
        computation_columns (list[str]): The computation columns for this FeatureSet
        reset_display (bool): Also reset the display columns to match (default: True)
    """
    self.log.important(f"Setting Computation Columns...{computation_columns}")
    from workbench.core.views import ComputationView

    # Create a NEW computation view
    ComputationView.create(self, column_list=computation_columns)
    self.recompute_stats()

    # Reset the display columns to match the computation columns
    if reset_display:
        self.set_display_columns(computation_columns)

set_display_columns(diplay_columns)

Set the display columns for this Data Source

Parameters:

Name Type Description Default
diplay_columns list[str]

The display columns for this Data Source

required
Source code in src/workbench/core/artifacts/feature_set_core.py
def set_display_columns(self, diplay_columns: list[str]):
    """Set the display columns for this Data Source

    Args:
        diplay_columns (list[str]): The display columns for this Data Source
    """
    # Check mismatch of display columns to computation columns
    c_view = self.view("computation")
    computation_columns = c_view.columns
    mismatch_columns = [col for col in diplay_columns if col not in computation_columns]
    if mismatch_columns:
        self.log.monitor(f"Display View/Computation mismatch: {mismatch_columns}")

    self.log.important(f"Setting Display Columns...{diplay_columns}")
    from workbench.core.views import DisplayView

    # Create a NEW display view
    DisplayView.create(self, source_table=c_view.table, column_list=diplay_columns)

set_training_holdouts(id_column, holdout_ids)

Set the hold out ids for the training view for this FeatureSet

Parameters:

Name Type Description Default
id_column str

The name of the id column.

required
holdout_ids list[str]

The list of holdout ids.

required
Source code in src/workbench/core/artifacts/feature_set_core.py
def set_training_holdouts(self, id_column: str, holdout_ids: list[str]):
    """Set the hold out ids for the training view for this FeatureSet

    Args:
        id_column (str): The name of the id column.
        holdout_ids (list[str]): The list of holdout ids.
    """
    from workbench.core.views import TrainingView

    # Create a NEW training view
    self.log.important(f"Setting Training Holdouts: {len(holdout_ids)} ids...")
    TrainingView.create(self, id_column=id_column, holdout_ids=holdout_ids)

size()

Return the size of the internal DataSource in MegaBytes

Source code in src/workbench/core/artifacts/feature_set_core.py
def size(self) -> float:
    """Return the size of the internal DataSource in MegaBytes"""
    return self.data_source.size()

smart_sample(recompute=False)

Get a SMART sample dataframe from this FeatureSet

Parameters:

Name Type Description Default
recompute bool

Recompute the smart sample (default=False)

False

Returns:

Type Description
DataFrame

pd.DataFrame: A combined DataFrame of sample data + outliers

Source code in src/workbench/core/artifacts/feature_set_core.py
def smart_sample(self, recompute: bool = False) -> pd.DataFrame:
    """Get a SMART sample dataframe from this FeatureSet

    Args:
        recompute (bool): Recompute the smart sample (default=False)

    Returns:
        pd.DataFrame: A combined DataFrame of sample data + outliers
    """
    return self.data_source.smart_sample(recompute=recompute)

snapshot_query(table_name=None)

An Athena query to get the latest snapshot of features

Parameters:

Name Type Description Default
table_name str

The name of the table to query (default: None)

None

Returns:

Name Type Description
str str

The Athena query to get the latest snapshot of features

Source code in src/workbench/core/artifacts/feature_set_core.py
def snapshot_query(self, table_name: str = None) -> str:
    """An Athena query to get the latest snapshot of features

    Args:
        table_name (str): The name of the table to query (default: None)

    Returns:
        str: The Athena query to get the latest snapshot of features
    """
    # Remove FeatureGroup metadata columns that might have gotten added
    columns = self.columns
    filter_columns = ["write_time", "api_invocation_time", "is_deleted"]
    columns = ", ".join(['"' + x + '"' for x in columns if x not in filter_columns])

    query = (
        f"SELECT {columns} "
        f"    FROM (SELECT *, row_number() OVER (PARTITION BY {self.id_column} "
        f"        ORDER BY {self.event_time} desc, api_invocation_time DESC, write_time DESC) AS row_num "
        f'        FROM "{table_name}") '
        "    WHERE row_num = 1 and NOT is_deleted;"
    )
    return query

table_hash()

Return the hash for the Athena table

Source code in src/workbench/core/artifacts/feature_set_core.py
def table_hash(self) -> str:
    """Return the hash for the Athena table"""
    return self.data_source.table_hash()

value_counts(recompute=False)

Get the value counts for the string columns of the underlying DataSource Args: recompute (bool): Recompute the value counts (default=False) Returns: dict: A dictionary of value counts for the string columns

Source code in src/workbench/core/artifacts/feature_set_core.py
def value_counts(self, recompute: bool = False) -> dict:
    """Get the value counts for the string columns of the underlying DataSource
    Args:
        recompute (bool): Recompute the value counts (default=False)
    Returns:
        dict: A dictionary of value counts for the string columns
    """
    return self.data_source.value_counts(recompute)

view(view_name)

Return a DataFrame for a specific view Args: view_name (str): The name of the view to return Returns: pd.DataFrame: A DataFrame for the specified view

Source code in src/workbench/core/artifacts/feature_set_core.py
def view(self, view_name: str) -> "View":
    """Return a DataFrame for a specific view
    Args:
        view_name (str): The name of the view to return
    Returns:
        pd.DataFrame: A DataFrame for the specified view
    """
    from workbench.core.views import View

    return View(self, view_name)

views()

Return the views for this Data Source

Source code in src/workbench/core/artifacts/feature_set_core.py
def views(self) -> list[str]:
    """Return the views for this Data Source"""
    from workbench.core.views.view_utils import list_views

    return list_views(self.data_source)