Skip to content

EndpointCore

API Classes

Found a method here you want to use? The API Classes have method pass-through so just call the method on the Endpoint API Class and voilà it works the same.

EndpointCore: Workbench EndpointCore Class

EndpointCore

Bases: Artifact

EndpointCore: Workbench EndpointCore Class

Common Usage
my_endpoint = EndpointCore(endpoint_uuid)
prediction_df = my_endpoint.predict(test_df)
metrics = my_endpoint.regression_metrics(target_column, prediction_df)
for metric, value in metrics.items():
    print(f"{metric}: {value:0.3f}")
Source code in src/workbench/core/artifacts/endpoint_core.py
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
class EndpointCore(Artifact):
    """EndpointCore: Workbench EndpointCore Class

    Common Usage:
        ```python
        my_endpoint = EndpointCore(endpoint_uuid)
        prediction_df = my_endpoint.predict(test_df)
        metrics = my_endpoint.regression_metrics(target_column, prediction_df)
        for metric, value in metrics.items():
            print(f"{metric}: {value:0.3f}")
        ```
    """

    def __init__(self, endpoint_uuid, **kwargs):
        """EndpointCore Initialization

        Args:
            endpoint_uuid (str): Name of Endpoint in Workbench
        """

        # Make sure the endpoint_uuid is a valid name
        self.is_name_valid(endpoint_uuid, delimiter="-", lower_case=False)

        # Call SuperClass Initialization
        super().__init__(endpoint_uuid, **kwargs)

        # Grab an Cloud Metadata object and pull information for Endpoints
        self.endpoint_name = endpoint_uuid
        self.endpoint_meta = self.meta.endpoint(self.endpoint_name)

        # Sanity check that we found the endpoint
        if self.endpoint_meta is None:
            self.log.important(f"Could not find endpoint {self.uuid} within current visibility scope")
            return

        # Sanity check the Endpoint state
        if self.endpoint_meta["EndpointStatus"] == "Failed":
            self.log.critical(f"Endpoint {self.uuid} is in a failed state")
            reason = self.endpoint_meta["FailureReason"]
            self.log.critical(f"Failure Reason: {reason}")
            self.log.critical("Please delete this endpoint and re-deploy...")

        # Set the Inference, Capture, and Monitoring S3 Paths
        base_endpoint_path = f"{self.endpoints_s3_path}/{self.uuid}"
        self.endpoint_inference_path = f"{base_endpoint_path}/inference"
        self.endpoint_data_capture_path = f"{base_endpoint_path}/data_capture"
        self.endpoint_monitoring_path = f"{base_endpoint_path}/monitoring"

        # Set the Model Name
        self.model_name = self.get_input()

        # This is for endpoint error handling later
        self.endpoint_return_columns = None

        # We temporary cache the endpoint metrics
        self.temp_storage = Cache(prefix="temp_storage", expire=300)  # 5 minutes

        # Call SuperClass Post Initialization
        super().__post_init__()

        # All done
        self.log.info(f"EndpointCore Initialized: {self.endpoint_name}")

    def refresh_meta(self):
        """Refresh the Artifact's metadata"""
        self.endpoint_meta = self.meta.endpoint(self.endpoint_name)

    def exists(self) -> bool:
        """Does the feature_set_name exist in the AWS Metadata?"""
        if self.endpoint_meta is None:
            self.log.debug(f"Endpoint {self.endpoint_name} not found in AWS Metadata")
            return False
        return True

    def health_check(self) -> list[str]:
        """Perform a health check on this model

        Returns:
            list[str]: List of health issues
        """
        if not self.ready():
            return ["needs_onboard"]

        # Call the base class health check
        health_issues = super().health_check()

        # Does this endpoint have a config?
        # Note: This is not an authoritative check, so improve later
        if self.endpoint_meta.get("ProductionVariants") is None:
            health_issues.append("no_config")

        # We're going to check for 5xx errors and no activity
        endpoint_metrics = self.endpoint_metrics()

        # Check if we have metrics
        if endpoint_metrics is None:
            health_issues.append("unknown_error")
            return health_issues

        # Check for 5xx errors
        num_errors = endpoint_metrics["Invocation5XXErrors"].sum()
        if num_errors > 5:
            health_issues.append("5xx_errors")
        elif num_errors > 0:
            health_issues.append("5xx_errors_min")
        else:
            self.remove_health_tag("5xx_errors")
            self.remove_health_tag("5xx_errors_min")

        # Check for Endpoint activity
        num_invocations = endpoint_metrics["Invocations"].sum()
        if num_invocations == 0:
            health_issues.append("no_activity")
        else:
            self.remove_health_tag("no_activity")
        return health_issues

    def is_serverless(self) -> bool:
        """Check if the current endpoint is serverless.

        Returns:
            bool: True if the endpoint is serverless, False otherwise.
        """
        return "Serverless" in self.endpoint_meta["InstanceType"]

    def add_data_capture(self):
        """Add data capture to the endpoint"""
        self.get_monitor().add_data_capture()

    def get_monitor(self):
        """Get the MonitorCore class for this endpoint"""
        from workbench.core.artifacts.monitor_core import MonitorCore

        return MonitorCore(self.endpoint_name)

    def size(self) -> float:
        """Return the size of this data in MegaBytes"""
        return 0.0

    def aws_meta(self) -> dict:
        """Get ALL the AWS metadata for this artifact"""
        return self.endpoint_meta

    def arn(self) -> str:
        """AWS ARN (Amazon Resource Name) for this artifact"""
        return self.endpoint_meta["EndpointArn"]

    def aws_url(self):
        """The AWS URL for looking at/querying this data source"""
        return f"https://{self.aws_region}.console.aws.amazon.com/athena/home"

    def created(self) -> datetime:
        """Return the datetime when this artifact was created"""
        return self.endpoint_meta["CreationTime"]

    def modified(self) -> datetime:
        """Return the datetime when this artifact was last modified"""
        return self.endpoint_meta["LastModifiedTime"]

    def model_data_url(self) -> Optional[str]:
        """Return the model data URL for this endpoint

        Returns:
            Optional[str]: The model data URL for this endpoint
        """
        from workbench.utils.endpoint_utils import internal_model_data_url  # Avoid circular import

        return internal_model_data_url(self.endpoint_config_name(), self.boto3_session)

    def hash(self) -> Optional[str]:
        """Return the hash for the internal model used by this endpoint

        Returns:
            Optional[str]: The hash for the internal model used by this endpoint
        """
        model_url = self.model_data_url()
        return compute_s3_object_hash(model_url, self.boto3_session)

    @property
    def instance_type(self) -> str:
        """Return the instance type for this endpoint"""
        return self.endpoint_meta["InstanceType"]

    def endpoint_metrics(self) -> Union[pd.DataFrame, None]:
        """Return the metrics for this endpoint

        Returns:
            pd.DataFrame: DataFrame with the metrics for this endpoint (or None if no metrics)
        """

        # Do we have it cached?
        metrics_key = f"endpoint:{self.uuid}:endpoint_metrics"
        endpoint_metrics = self.temp_storage.get(metrics_key)
        if endpoint_metrics is not None:
            return endpoint_metrics

        # We don't have it cached so let's get it from CloudWatch
        if "ProductionVariants" not in self.endpoint_meta:
            return None
        self.log.important("Updating endpoint metrics...")
        variant = self.endpoint_meta["ProductionVariants"][0]["VariantName"]
        endpoint_metrics = EndpointMetrics().get_metrics(self.uuid, variant=variant)
        self.temp_storage.set(metrics_key, endpoint_metrics)
        return endpoint_metrics

    def details(self) -> dict:
        """Additional Details about this Endpoint

        Returns:
            dict(dict): A dictionary of details about this Endpoint
        """

        # Fill in all the details about this Endpoint
        details = self.summary()

        # Get details from our AWS Metadata
        details["status"] = self.endpoint_meta["EndpointStatus"]
        details["instance"] = self.endpoint_meta["InstanceType"]
        try:
            details["instance_count"] = self.endpoint_meta["ProductionVariants"][0]["CurrentInstanceCount"] or "-"
        except KeyError:
            details["instance_count"] = "-"
        if "ProductionVariants" in self.endpoint_meta:
            details["variant"] = self.endpoint_meta["ProductionVariants"][0]["VariantName"]
        else:
            details["variant"] = "-"

        # Add endpoint metrics from CloudWatch
        details["endpoint_metrics"] = self.endpoint_metrics()

        # Return the details
        return details

    def onboard(self, interactive: bool = False) -> bool:
        """This is a BLOCKING method that will onboard the Endpoint (make it ready)
        Args:
            interactive (bool, optional): If True, will prompt the user for information. (default: False)
        Returns:
            bool: True if the Endpoint is successfully onboarded, False otherwise
        """

        # Make sure our input is defined
        if self.get_input() == "unknown":
            if interactive:
                input_model = input("Input Model?: ")
            else:
                self.log.critical("Input Model is not defined!")
                return False
        else:
            input_model = self.get_input()

        # Now that we have the details, let's onboard the Endpoint with args
        return self.onboard_with_args(input_model)

    def onboard_with_args(self, input_model: str) -> bool:
        """Onboard the Endpoint with the given arguments

        Args:
            input_model (str): The input model for this endpoint
        Returns:
            bool: True if the Endpoint is successfully onboarded, False otherwise
        """
        # Set the status to onboarding
        self.set_status("onboarding")

        self.upsert_workbench_meta({"workbench_input": input_model})
        self.model_name = input_model

        # Remove the needs_onboard tag
        self.remove_health_tag("needs_onboard")
        self.set_status("ready")

        # Run a health check and refresh the meta
        time.sleep(2)  # Give the AWS Metadata a chance to update
        self.health_check()
        self.refresh_meta()
        self.details()
        return True

    def auto_inference(self, capture: bool = False) -> pd.DataFrame:
        """Run inference on the endpoint using FeatureSet data

        Args:
            capture (bool, optional): Capture the inference results and metrics (default=False)
        """

        # Sanity Check that we have a model
        model = ModelCore(self.get_input())
        if not model.exists():
            self.log.error("No model found for this endpoint. Returning empty DataFrame.")
            return pd.DataFrame()

        # Now get the FeatureSet and make sure it exists
        fs = FeatureSetCore(model.get_input())
        if not fs.exists():
            self.log.error("No FeatureSet found for this endpoint. Returning empty DataFrame.")
            return pd.DataFrame()

        # Grab the evaluation data from the FeatureSet
        table = fs.view("training").table
        eval_df = fs.query(f'SELECT * FROM "{table}" where training = FALSE')
        capture_uuid = "auto_inference" if capture else None
        return self.inference(eval_df, capture_uuid, id_column=fs.id_column)

    def inference(
        self, eval_df: pd.DataFrame, capture_uuid: str = None, id_column: str = None, drop_error_rows: bool = False
    ) -> pd.DataFrame:
        """Run inference and compute performance metrics with optional capture

        Args:
            eval_df (pd.DataFrame): DataFrame to run predictions on (must have superset of features)
            capture_uuid (str, optional): UUID of the inference capture (default=None)
            id_column (str, optional): Name of the ID column (default=None)
            drop_error_rows (bool, optional): If True, drop rows that had endpoint errors/issues (default=False)

        Returns:
            pd.DataFrame: DataFrame with the inference results

        Note:
            If capture=True inference/performance metrics are written to S3 Endpoint Inference Folder
        """

        # Check if this is a 'floating endpoint' (no model)
        if self.get_input() == "unknown":
            self.log.important("No model associated with this endpoint, running 'no frills' inference...")
            return self.fast_inference(eval_df)

        # Run predictions on the evaluation data
        prediction_df = self._predict(eval_df, drop_error_rows)
        if prediction_df.empty:
            self.log.warning("No predictions were made. Returning empty DataFrame.")
            return prediction_df

        # Get the target column
        model = ModelCore(self.model_name)
        target_column = model.target()

        # Sanity Check that the target column is present
        if target_column and (target_column not in prediction_df.columns):
            self.log.important(f"Target Column {target_column} not found in prediction_df!")
            self.log.important("In order to compute metrics, the target column must be present!")
            return prediction_df

        # Compute the standard performance metrics for this model
        model_type = model.model_type
        if model_type in [ModelType.REGRESSOR, ModelType.QUANTILE_REGRESSOR, ModelType.ENSEMBLE_REGRESSOR]:
            prediction_df = self.residuals(target_column, prediction_df)
            metrics = self.regression_metrics(target_column, prediction_df)
        elif model_type == ModelType.CLASSIFIER:
            metrics = self.classification_metrics(target_column, prediction_df)
        else:
            # For other model types, we don't compute metrics
            self.log.info(f"Model Type: {model_type} doesn't have metrics...")
            metrics = pd.DataFrame()

        # Print out the metrics
        if not metrics.empty:
            print(f"Performance Metrics for {self.model_name} on {self.uuid}")
            print(metrics.head())

            # Capture the inference results and metrics
            if capture_uuid is not None:
                description = capture_uuid.replace("_", " ").title()
                features = model.features()
                self._capture_inference_results(
                    capture_uuid, prediction_df, target_column, model_type, metrics, description, features, id_column
                )

        # Return the prediction DataFrame
        return prediction_df

    def fast_inference(self, eval_df: pd.DataFrame, threads: int = 4) -> pd.DataFrame:
        """Run inference on the Endpoint using the provided DataFrame

        Args:
            eval_df (pd.DataFrame): The DataFrame to run predictions on
            threads (int): The number of threads to use (default: 4)

        Returns:
            pd.DataFrame: The DataFrame with predictions

        Note:
            There's no sanity checks or error handling... just FAST Inference!
        """
        return fast_inference(self.uuid, eval_df, self.sm_session, threads=threads)

    def _predict(self, eval_df: pd.DataFrame, drop_error_rows: bool = False) -> pd.DataFrame:
        """Internal: Run prediction on the given observations in the given DataFrame

        Args:
            eval_df (pd.DataFrame): DataFrame to run predictions on (must have superset of features)
            drop_error_rows (bool): If True, drop rows that had endpoint errors/issues (default=False)
        Returns:
            pd.DataFrame: Return the DataFrame with additional columns, prediction and any _proba columns
        """

        # Sanity check: Does the DataFrame have 0 rows?
        if eval_df.empty:
            self.log.warning("Evaluation DataFrame has 0 rows. No predictions to run.")
            return pd.DataFrame(columns=eval_df.columns)  # Return empty DataFrame with same structure

        # Sanity check: Does the Model have Features?
        features = ModelCore(self.model_name).features()
        if not features:
            self.log.warning("Model does not have features defined, using all columns in the DataFrame")
        else:
            # Sanity check: Does the DataFrame have the required features?
            df_columns_lower = set(col.lower() for col in eval_df.columns)
            features_lower = set(feature.lower() for feature in features)

            # Check if the features are a subset of the DataFrame columns (case-insensitive)
            if not features_lower.issubset(df_columns_lower):
                missing_features = features_lower - df_columns_lower
                raise ValueError(f"DataFrame does not contain required features: {missing_features}")

        # Create our Endpoint Predictor Class
        predictor = Predictor(
            self.endpoint_name,
            sagemaker_session=self.sm_session,
            serializer=CSVSerializer(),
            deserializer=CSVDeserializer(),
        )

        # Now split up the dataframe into 100 row chunks, send those chunks to our
        # endpoint (with error handling) and stitch all the chunks back together
        df_list = []
        total_rows = len(eval_df)
        for index in range(0, len(eval_df), 100):
            self.log.info(f"Processing {index}:{min(index+100, total_rows)} out of {total_rows} rows...")

            # Compute partial DataFrames, add them to a list, and concatenate at the end
            partial_df = self._endpoint_error_handling(predictor, eval_df[index : index + 100], drop_error_rows)
            df_list.append(partial_df)

        # Concatenate the dataframes
        combined_df = pd.concat(df_list, ignore_index=True)

        # Some endpoints will put in "N/A" values (for CSV serialization)
        # We need to convert these to NaN and the run the conversions below
        # Report on the number of N/A values in each column in the DataFrame
        # For any cound above 0 list the column name and the number of N/A values
        na_counts = combined_df.isin(["N/A"]).sum()
        for column, count in na_counts.items():
            if count > 0:
                self.log.warning(f"{column} has {count} N/A values, converting to NaN")
        pd.set_option("future.no_silent_downcasting", True)
        combined_df = combined_df.replace("N/A", float("nan"))

        # Convert data to numeric
        # Note: Since we're using CSV serializers numeric columns often get changed to generic 'object' types

        # Hard Conversion
        # Note: We explicitly catch exceptions for columns that cannot be converted to numeric
        converted_df = combined_df.copy()
        for column in combined_df.columns:
            try:
                converted_df[column] = pd.to_numeric(combined_df[column])
            except ValueError:
                # If a ValueError is raised, the column cannot be converted to numeric, so we keep it as is
                pass
            except TypeError:
                # This typically means a duplicated column name, so confirm duplicate (more than 1) and log it
                column_count = (converted_df.columns == column).sum()
                self.log.critical(f"{column} occurs {column_count} times in the DataFrame.")
                pass

        # Soft Conversion
        # Convert columns to the best possible dtype that supports the pd.NA missing value.
        converted_df = converted_df.convert_dtypes()

        # Convert pd.NA placeholders to pd.NA
        # Note: CSV serialization converts pd.NA to blank strings, so we have to put in placeholders
        converted_df.replace("__NA__", pd.NA, inplace=True)

        # Check for True/False values in the string columns
        for column in converted_df.select_dtypes(include=["string"]).columns:
            if converted_df[column].str.lower().isin(["true", "false"]).all():
                converted_df[column] = converted_df[column].str.lower().map({"true": True, "false": False})

        # Return the Dataframe
        return converted_df

    def _endpoint_error_handling(self, predictor, feature_df, drop_error_rows: bool = False) -> pd.DataFrame:
        """Internal: Handles errors, retries, and binary search for problematic rows.

        Args:
            predictor (Predictor): The SageMaker Predictor object
            feature_df (pd.DataFrame): DataFrame to run predictions on
            drop_error_rows (bool): If True, drop rows that had endpoint errors/issues (default=False)
        Returns:
            pd.DataFrame: DataFrame with predictions (NaNs for problematic rows or dropped rows if specified)
        """

        # Sanity check: Does the DataFrame have 0 rows?
        if feature_df.empty:
            self.log.warning("DataFrame has 0 rows. No predictions to run.")
            return pd.DataFrame(columns=feature_df.columns)

        # Convert DataFrame into a CSV buffer
        csv_buffer = StringIO()
        feature_df.to_csv(csv_buffer, index=False)

        try:
            # Send CSV buffer to the predictor and process results
            results = predictor.predict(csv_buffer.getvalue())
            results_df = pd.DataFrame.from_records(results[1:], columns=results[0])
            self.endpoint_return_columns = results_df.columns.tolist()
            return results_df

        except botocore.exceptions.ClientError as err:
            error_code = err.response["Error"]["Code"]
            if error_code == "ModelNotReadyException":
                self.log.error(f"Error {error_code}")
                self.log.error(err.response)
                self.log.error("Model not ready. Sleeping and retrying...")
                time.sleep(60)
                return self._endpoint_error_handling(predictor, feature_df)

            elif error_code == "ModelError":
                # Log full error response to capture all available debugging info
                self.log.error(f"Error {error_code}")
                self.log.error(err.response)
                self.log.warning("Bisecting the DataFrame and retrying...")

                # Base case: single row handling
                if len(feature_df) == 1:
                    if not self.endpoint_return_columns:
                        raise
                    self.log.warning(f"Endpoint Inference failed on: {feature_df}")
                    if drop_error_rows:
                        self.log.warning("Dropping rows with endpoint errors...")
                        return pd.DataFrame(columns=feature_df.columns)
                    # Fill with NaNs for inference columns, keeping original feature data
                    self.log.warning("Filling with NaNs for inference columns...")
                    return self._fill_with_nans(feature_df)

                # Binary search for problematic rows
                mid_point = len(feature_df) // 2
                self.log.info(f"Bisect DataFrame: 0 -> {mid_point} and {mid_point} -> {len(feature_df)}")
                first_half = self._endpoint_error_handling(predictor, feature_df.iloc[:mid_point], drop_error_rows)
                second_half = self._endpoint_error_handling(predictor, feature_df.iloc[mid_point:], drop_error_rows)
                return pd.concat([first_half, second_half], ignore_index=True)

            else:
                self.log.critical(f"Unexpected ClientError: {error_code}")
                self.log.critical(err.response)
                raise

        except Exception as err:
            self.log.critical(f"Unexpected general error: {err}")
            raise

    def _fill_with_nans(self, feature_df: pd.DataFrame) -> pd.DataFrame:
        """Internal: Fill a single-row DataFrame with NaNs for inference columns, keeping original feature data."""

        # Create a single-row DataFrame with NaNs, ensuring dtype=object to prevent type downcasting
        one_row_df_with_nans = pd.DataFrame({col: [np.NaN] for col in self.endpoint_return_columns}, dtype=object)

        # Check if feature_df is not empty and has at least one row
        if not feature_df.empty:
            # Copy values from the input DataFrame for overlapping columns
            for column in set(feature_df.columns).intersection(self.endpoint_return_columns):
                # Use .iloc[0] to access the first row by position, regardless of the index
                one_row_df_with_nans.at[0, column] = feature_df.iloc[0][column]

        return one_row_df_with_nans

    @staticmethod
    def _hash_dataframe(df: pd.DataFrame, hash_length: int = 8):
        # Internal: Compute a data hash for the dataframe
        df = df.copy()
        df = df.sort_values(by=sorted(df.columns.tolist()))
        row_hashes = pd.util.hash_pandas_object(df, index=False)
        combined = row_hashes.values.tobytes()
        return hashlib.md5(combined).hexdigest()[:hash_length]

    def _capture_inference_results(
        self,
        capture_uuid: str,
        pred_results_df: pd.DataFrame,
        target_column: str,
        model_type: ModelType,
        metrics: pd.DataFrame,
        description: str,
        features: list,
        id_column: str = None,
    ):
        """Internal: Capture the inference results and metrics to S3

        Args:
            capture_uuid (str): UUID of the inference capture
            pred_results_df (pd.DataFrame): DataFrame with the prediction results
            target_column (str): Name of the target column
            model_type (ModelType): Type of the model (e.g. REGRESSOR, CLASSIFIER)
            metrics (pd.DataFrame): DataFrame with the performance metrics
            description (str): Description of the inference results
            features (list): List of features to include in the inference results
            id_column (str, optional): Name of the ID column (default=None)
        """

        # Compute a dataframe hash (just use the last 8)
        data_hash = self._hash_dataframe(pred_results_df[features])

        # Metadata for the model inference
        inference_meta = {
            "name": capture_uuid,
            "data_hash": data_hash,
            "num_rows": len(pred_results_df),
            "description": description,
        }

        # Create the S3 Path for the Inference Capture
        inference_capture_path = f"{self.endpoint_inference_path}/{capture_uuid}"

        # Write the metadata dictionary and metrics to our S3 Model Inference Folder
        wr.s3.to_json(
            pd.DataFrame([inference_meta]),
            f"{inference_capture_path}/inference_meta.json",
            index=False,
        )
        self.log.info(f"Writing metrics to {inference_capture_path}/inference_metrics.csv")
        wr.s3.to_csv(metrics, f"{inference_capture_path}/inference_metrics.csv", index=False)

        # Grab the target column, prediction column, any _proba columns, and the ID column (if present)
        prediction_col = "prediction" if "prediction" in pred_results_df.columns else "predictions"
        output_columns = [target_column, prediction_col]

        # Add any _proba columns to the output columns
        output_columns += [col for col in pred_results_df.columns if col.endswith("_proba")]

        # Add any quantile columns to the output columns
        output_columns += [col for col in pred_results_df.columns if col.startswith("q_") or col.startswith("qr_")]

        # Add the ID column
        if id_column and id_column in pred_results_df.columns:
            output_columns.append(id_column)

        # Write the predictions to our S3 Model Inference Folder
        self.log.info(f"Writing predictions to {inference_capture_path}/inference_predictions.csv")
        subset_df = pred_results_df[output_columns]
        wr.s3.to_csv(subset_df, f"{inference_capture_path}/inference_predictions.csv", index=False)

        # CLASSIFIER: Write the confusion matrix to our S3 Model Inference Folder
        if model_type == ModelType.CLASSIFIER:
            conf_mtx = self.generate_confusion_matrix(target_column, pred_results_df)
            self.log.info(f"Writing confusion matrix to {inference_capture_path}/inference_cm.csv")
            # Note: Unlike other dataframes here, we want to write the index (labels) to the CSV
            wr.s3.to_csv(conf_mtx, f"{inference_capture_path}/inference_cm.csv", index=True)

        # Generate SHAP values for our Prediction Dataframe
        # generate_shap_values(self.endpoint_name, model_type.value, pred_results_df, inference_capture_path)

        # Now recompute the details for our Model
        self.log.important(f"Recomputing Details for {self.model_name} to show latest Inference Results...")
        model = ModelCore(self.model_name)
        model._load_inference_metrics(capture_uuid)
        model.details()

        # Recompute the details so that inference model metrics are updated
        self.log.important(f"Recomputing Details for {self.uuid} to show latest Inference Results...")
        self.details()

    def regression_metrics(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
        """Compute the performance metrics for this Endpoint
        Args:
            target_column (str): Name of the target column
            prediction_df (pd.DataFrame): DataFrame with the prediction results
        Returns:
            pd.DataFrame: DataFrame with the performance metrics
        """

        # Sanity Check the prediction DataFrame
        if prediction_df.empty:
            self.log.warning("No predictions were made. Returning empty DataFrame.")
            return pd.DataFrame()

        # Compute the metrics
        try:
            y_true = prediction_df[target_column]
            prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
            y_pred = prediction_df[prediction_col]

            mae = mean_absolute_error(y_true, y_pred)
            rmse = np.sqrt(mean_squared_error(y_true, y_pred))
            r2 = r2_score(y_true, y_pred)
            # Mean Absolute Percentage Error
            mape = np.mean(np.where(y_true != 0, np.abs((y_true - y_pred) / y_true), np.abs(y_true - y_pred))) * 100
            # Median Absolute Error
            medae = median_absolute_error(y_true, y_pred)

            # Organize and return the metrics
            metrics = {
                "MAE": round(mae, 3),
                "RMSE": round(rmse, 3),
                "R2": round(r2, 3),
                "MAPE": round(mape, 3),
                "MedAE": round(medae, 3),
                "NumRows": len(prediction_df),
            }
            return pd.DataFrame.from_records([metrics])
        except Exception as e:
            self.log.warning(f"Error computing regression metrics: {str(e)}")
            return pd.DataFrame()

    def residuals(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
        """Add the residuals to the prediction DataFrame
        Args:
            target_column (str): Name of the target column
            prediction_df (pd.DataFrame): DataFrame with the prediction results
        Returns:
            pd.DataFrame: DataFrame with two new columns called 'residuals' and 'residuals_abs'
        """

        # Compute the residuals
        y_true = prediction_df[target_column]
        prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
        y_pred = prediction_df[prediction_col]

        # Check for classification scenario
        if not pd.api.types.is_numeric_dtype(y_true) or not pd.api.types.is_numeric_dtype(y_pred):
            self.log.warning("Target and Prediction columns are not numeric. Computing 'diffs'...")
            prediction_df["residuals"] = (y_true != y_pred).astype(int)
            prediction_df["residuals_abs"] = prediction_df["residuals"]
        else:
            # Compute numeric residuals for regression
            prediction_df["residuals"] = y_true - y_pred
            prediction_df["residuals_abs"] = np.abs(prediction_df["residuals"])

        return prediction_df

    @staticmethod
    def validate_proba_columns(prediction_df: pd.DataFrame, class_labels: list, guessing: bool = False):
        """Ensure probability columns are correctly aligned with class labels

        Args:
            prediction_df (pd.DataFrame): DataFrame with the prediction results
            class_labels (list): List of class labels
            guessing (bool, optional): Whether we're guessing the class labels. Defaults to False.
        """
        proba_columns = [col.replace("_proba", "") for col in prediction_df.columns if col.endswith("_proba")]

        if sorted(class_labels) != sorted(proba_columns):
            if guessing:
                raise ValueError(f"_proba columns {proba_columns} != GUESSED class_labels {class_labels}!")
            else:
                raise ValueError(f"_proba columns {proba_columns} != class_labels {class_labels}!")

    def classification_metrics(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
        """Compute the performance metrics for this Endpoint

        Args:
            target_column (str): Name of the target column
            prediction_df (pd.DataFrame): DataFrame with the prediction results

        Returns:
            pd.DataFrame: DataFrame with the performance metrics
        """
        # Get the class labels from the model
        class_labels = ModelCore(self.model_name).class_labels()
        if class_labels is None:
            self.log.warning(
                "Class labels not found in the model. Guessing class labels from the prediction DataFrame."
            )
            class_labels = prediction_df[target_column].unique().tolist()
            self.validate_proba_columns(prediction_df, class_labels, guessing=True)
        else:
            self.validate_proba_columns(prediction_df, class_labels)

        # Calculate precision, recall, fscore, and support, handling zero division
        prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
        scores = precision_recall_fscore_support(
            prediction_df[target_column],
            prediction_df[prediction_col],
            average=None,
            labels=class_labels,
            zero_division=0,
        )

        # Identify the probability columns and keep them as a Pandas DataFrame
        proba_columns = [f"{label}_proba" for label in class_labels]
        y_score = prediction_df[proba_columns]

        # One-hot encode the true labels using all class labels (fit with class_labels)
        encoder = OneHotEncoder(categories=[class_labels], sparse_output=False)
        y_true = encoder.fit_transform(prediction_df[[target_column]])

        # Calculate ROC AUC per label and handle exceptions for missing classes
        roc_auc_per_label = []
        for i, label in enumerate(class_labels):
            try:
                roc_auc = roc_auc_score(y_true[:, i], y_score.iloc[:, i])
            except ValueError as e:
                self.log.warning(f"ROC AUC calculation failed for label {label}.")
                self.log.warning(f"{str(e)}")
                roc_auc = 0.0
            roc_auc_per_label.append(roc_auc)

        # Put the scores into a DataFrame
        score_df = pd.DataFrame(
            {
                target_column: class_labels,
                "precision": scores[0],
                "recall": scores[1],
                "fscore": scores[2],
                "roc_auc": roc_auc_per_label,
                "support": scores[3],
            }
        )
        return score_df

    def generate_confusion_matrix(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
        """Compute the confusion matrix for this Endpoint
        Args:
            target_column (str): Name of the target column
            prediction_df (pd.DataFrame): DataFrame with the prediction results
        Returns:
            pd.DataFrame: DataFrame with the confusion matrix
        """

        y_true = prediction_df[target_column]
        prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
        y_pred = prediction_df[prediction_col]

        # Check if our model has class labels, if not we'll use the unique labels in the prediction
        class_labels = ModelCore(self.model_name).class_labels()
        if class_labels is None:
            class_labels = sorted(list(set(y_true) | set(y_pred)))

        # Compute the confusion matrix (sklearn confusion_matrix)
        conf_mtx = confusion_matrix(y_true, y_pred, labels=class_labels)

        # Create a DataFrame
        conf_mtx_df = pd.DataFrame(conf_mtx, index=class_labels, columns=class_labels)
        conf_mtx_df.index.name = "labels"

        # Check if our model has class labels. If so make the index and columns ordered
        model_class_labels = ModelCore(self.model_name).class_labels()
        if model_class_labels:
            self.log.important("Reordering the confusion matrix based on model class labels...")
            conf_mtx_df.index = pd.Categorical(conf_mtx_df.index, categories=model_class_labels, ordered=True)
            conf_mtx_df.columns = pd.Categorical(conf_mtx_df.columns, categories=model_class_labels, ordered=True)
            conf_mtx_df = conf_mtx_df.sort_index().sort_index(axis=1)
        return conf_mtx_df

    def endpoint_config_name(self) -> str:
        # Grab the Endpoint Config Name from the AWS
        details = self.sm_client.describe_endpoint(EndpointName=self.endpoint_name)
        return details["EndpointConfigName"]

    def set_input(self, input: str, force=False):
        """Override: Set the input data for this artifact

        Args:
            input (str): Name of input for this artifact
            force (bool, optional): Force the input to be set. Defaults to False.
        Note:
            We're going to not allow this to be used for Models
        """
        if not force:
            self.log.warning(f"Endpoint {self.uuid}: Does not allow manual override of the input!")
            return

        # Okay we're going to allow this to be set
        self.log.important(f"{self.uuid}: Setting input to {input}...")
        self.log.important("Be careful with this! It breaks automatic provenance of the artifact!")
        self.upsert_workbench_meta({"workbench_input": input})

    def delete(self):
        """ "Delete an existing Endpoint: Underlying Models, Configuration, and Endpoint"""
        if not self.exists():
            self.log.warning(f"Trying to delete an Model that doesn't exist: {self.uuid}")

        # Remove this endpoint from the list of registered endpoints
        self.log.info(f"Removing {self.uuid} from the list of registered endpoints...")
        ModelCore(self.model_name).remove_endpoint(self.uuid)

        # Call the Class Method to delete the Endpoint
        EndpointCore.managed_delete(endpoint_name=self.uuid)

    @classmethod
    def managed_delete(cls, endpoint_name: str):
        """Delete the Endpoint and associated resources if it exists"""

        # Check if the endpoint exists
        try:
            endpoint_info = cls.sm_client.describe_endpoint(EndpointName=endpoint_name)
        except ClientError as e:
            if e.response["Error"]["Code"] in ["ValidationException", "ResourceNotFound"]:
                cls.log.info(f"Endpoint {endpoint_name} not found!")
                return
            raise  # Re-raise unexpected errors

        # Delete underlying models (Endpoints store/use models internally)
        cls.delete_endpoint_models(endpoint_name)

        # Get Endpoint Config Name and delete if exists
        endpoint_config_name = endpoint_info["EndpointConfigName"]
        try:
            cls.log.info(f"Deleting Endpoint Config {endpoint_config_name}...")
            cls.sm_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
        except ClientError:
            cls.log.info(f"Endpoint Config {endpoint_config_name} not found...")

        # Delete any monitoring schedules associated with the endpoint
        monitoring_schedules = cls.sm_client.list_monitoring_schedules(EndpointName=endpoint_name)[
            "MonitoringScheduleSummaries"
        ]
        for schedule in monitoring_schedules:
            cls.log.info(f"Deleting Monitoring Schedule {schedule['MonitoringScheduleName']}...")
            cls.sm_client.delete_monitoring_schedule(MonitoringScheduleName=schedule["MonitoringScheduleName"])

        # Recursively delete all endpoint S3 artifacts (inference, data capture, monitoring, etc)
        base_endpoint_path = f"{cls.endpoints_s3_path}/{endpoint_name}"
        s3_objects = wr.s3.list_objects(base_endpoint_path, boto3_session=cls.boto3_session)
        cls.log.info(f"Deleting S3 Objects at {base_endpoint_path}...")
        cls.log.info(f"{s3_objects}")
        wr.s3.delete_objects(s3_objects, boto3_session=cls.boto3_session)

        # Delete any dataframes that were stored in the Dataframe Cache
        cls.log.info("Deleting Dataframe Cache...")
        cls.df_cache.delete_recursive(endpoint_name)

        # Delete the endpoint
        cls.log.info(f"Deleting Endpoint {endpoint_name}...")
        time.sleep(10)  # Allow AWS to catch up
        try:
            cls.sm_client.delete_endpoint(EndpointName=endpoint_name)
        except ClientError as e:
            cls.log.error("Error deleting endpoint.")
            raise e

        time.sleep(5)  # Final sleep for AWS to fully register deletions

    @classmethod
    def delete_endpoint_models(cls, endpoint_name: str):
        """Delete the underlying Model for an Endpoint

        Args:
            endpoint_name (str): The name of the endpoint to delete
        """

        # Grab the Endpoint Config Name from AWS
        endpoint_config_name = cls.sm_client.describe_endpoint(EndpointName=endpoint_name)["EndpointConfigName"]

        # Retrieve the Model Names from the Endpoint Config
        try:
            endpoint_config = cls.sm_client.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
        except botocore.exceptions.ClientError:
            cls.log.info(f"Endpoint Config {endpoint_config_name} doesn't exist...")
            return
        model_names = [variant["ModelName"] for variant in endpoint_config["ProductionVariants"]]
        for model_name in model_names:
            cls.log.info(f"Deleting Internal Model {model_name}...")
            try:
                cls.sm_client.delete_model(ModelName=model_name)
            except botocore.exceptions.ClientError as error:
                error_code = error.response["Error"]["Code"]
                error_message = error.response["Error"]["Message"]
                if error_code == "ResourceInUse":
                    cls.log.warning(f"Model {model_name} is still in use...")
                else:
                    cls.log.warning(f"Error: {error_code} - {error_message}")

instance_type property

Return the instance type for this endpoint

__init__(endpoint_uuid, **kwargs)

EndpointCore Initialization

Parameters:

Name Type Description Default
endpoint_uuid str

Name of Endpoint in Workbench

required
Source code in src/workbench/core/artifacts/endpoint_core.py
def __init__(self, endpoint_uuid, **kwargs):
    """EndpointCore Initialization

    Args:
        endpoint_uuid (str): Name of Endpoint in Workbench
    """

    # Make sure the endpoint_uuid is a valid name
    self.is_name_valid(endpoint_uuid, delimiter="-", lower_case=False)

    # Call SuperClass Initialization
    super().__init__(endpoint_uuid, **kwargs)

    # Grab an Cloud Metadata object and pull information for Endpoints
    self.endpoint_name = endpoint_uuid
    self.endpoint_meta = self.meta.endpoint(self.endpoint_name)

    # Sanity check that we found the endpoint
    if self.endpoint_meta is None:
        self.log.important(f"Could not find endpoint {self.uuid} within current visibility scope")
        return

    # Sanity check the Endpoint state
    if self.endpoint_meta["EndpointStatus"] == "Failed":
        self.log.critical(f"Endpoint {self.uuid} is in a failed state")
        reason = self.endpoint_meta["FailureReason"]
        self.log.critical(f"Failure Reason: {reason}")
        self.log.critical("Please delete this endpoint and re-deploy...")

    # Set the Inference, Capture, and Monitoring S3 Paths
    base_endpoint_path = f"{self.endpoints_s3_path}/{self.uuid}"
    self.endpoint_inference_path = f"{base_endpoint_path}/inference"
    self.endpoint_data_capture_path = f"{base_endpoint_path}/data_capture"
    self.endpoint_monitoring_path = f"{base_endpoint_path}/monitoring"

    # Set the Model Name
    self.model_name = self.get_input()

    # This is for endpoint error handling later
    self.endpoint_return_columns = None

    # We temporary cache the endpoint metrics
    self.temp_storage = Cache(prefix="temp_storage", expire=300)  # 5 minutes

    # Call SuperClass Post Initialization
    super().__post_init__()

    # All done
    self.log.info(f"EndpointCore Initialized: {self.endpoint_name}")

add_data_capture()

Add data capture to the endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def add_data_capture(self):
    """Add data capture to the endpoint"""
    self.get_monitor().add_data_capture()

arn()

AWS ARN (Amazon Resource Name) for this artifact

Source code in src/workbench/core/artifacts/endpoint_core.py
def arn(self) -> str:
    """AWS ARN (Amazon Resource Name) for this artifact"""
    return self.endpoint_meta["EndpointArn"]

auto_inference(capture=False)

Run inference on the endpoint using FeatureSet data

Parameters:

Name Type Description Default
capture bool

Capture the inference results and metrics (default=False)

False
Source code in src/workbench/core/artifacts/endpoint_core.py
def auto_inference(self, capture: bool = False) -> pd.DataFrame:
    """Run inference on the endpoint using FeatureSet data

    Args:
        capture (bool, optional): Capture the inference results and metrics (default=False)
    """

    # Sanity Check that we have a model
    model = ModelCore(self.get_input())
    if not model.exists():
        self.log.error("No model found for this endpoint. Returning empty DataFrame.")
        return pd.DataFrame()

    # Now get the FeatureSet and make sure it exists
    fs = FeatureSetCore(model.get_input())
    if not fs.exists():
        self.log.error("No FeatureSet found for this endpoint. Returning empty DataFrame.")
        return pd.DataFrame()

    # Grab the evaluation data from the FeatureSet
    table = fs.view("training").table
    eval_df = fs.query(f'SELECT * FROM "{table}" where training = FALSE')
    capture_uuid = "auto_inference" if capture else None
    return self.inference(eval_df, capture_uuid, id_column=fs.id_column)

aws_meta()

Get ALL the AWS metadata for this artifact

Source code in src/workbench/core/artifacts/endpoint_core.py
def aws_meta(self) -> dict:
    """Get ALL the AWS metadata for this artifact"""
    return self.endpoint_meta

aws_url()

The AWS URL for looking at/querying this data source

Source code in src/workbench/core/artifacts/endpoint_core.py
def aws_url(self):
    """The AWS URL for looking at/querying this data source"""
    return f"https://{self.aws_region}.console.aws.amazon.com/athena/home"

classification_metrics(target_column, prediction_df)

Compute the performance metrics for this Endpoint

Parameters:

Name Type Description Default
target_column str

Name of the target column

required
prediction_df DataFrame

DataFrame with the prediction results

required

Returns:

Type Description
DataFrame

pd.DataFrame: DataFrame with the performance metrics

Source code in src/workbench/core/artifacts/endpoint_core.py
def classification_metrics(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
    """Compute the performance metrics for this Endpoint

    Args:
        target_column (str): Name of the target column
        prediction_df (pd.DataFrame): DataFrame with the prediction results

    Returns:
        pd.DataFrame: DataFrame with the performance metrics
    """
    # Get the class labels from the model
    class_labels = ModelCore(self.model_name).class_labels()
    if class_labels is None:
        self.log.warning(
            "Class labels not found in the model. Guessing class labels from the prediction DataFrame."
        )
        class_labels = prediction_df[target_column].unique().tolist()
        self.validate_proba_columns(prediction_df, class_labels, guessing=True)
    else:
        self.validate_proba_columns(prediction_df, class_labels)

    # Calculate precision, recall, fscore, and support, handling zero division
    prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
    scores = precision_recall_fscore_support(
        prediction_df[target_column],
        prediction_df[prediction_col],
        average=None,
        labels=class_labels,
        zero_division=0,
    )

    # Identify the probability columns and keep them as a Pandas DataFrame
    proba_columns = [f"{label}_proba" for label in class_labels]
    y_score = prediction_df[proba_columns]

    # One-hot encode the true labels using all class labels (fit with class_labels)
    encoder = OneHotEncoder(categories=[class_labels], sparse_output=False)
    y_true = encoder.fit_transform(prediction_df[[target_column]])

    # Calculate ROC AUC per label and handle exceptions for missing classes
    roc_auc_per_label = []
    for i, label in enumerate(class_labels):
        try:
            roc_auc = roc_auc_score(y_true[:, i], y_score.iloc[:, i])
        except ValueError as e:
            self.log.warning(f"ROC AUC calculation failed for label {label}.")
            self.log.warning(f"{str(e)}")
            roc_auc = 0.0
        roc_auc_per_label.append(roc_auc)

    # Put the scores into a DataFrame
    score_df = pd.DataFrame(
        {
            target_column: class_labels,
            "precision": scores[0],
            "recall": scores[1],
            "fscore": scores[2],
            "roc_auc": roc_auc_per_label,
            "support": scores[3],
        }
    )
    return score_df

created()

Return the datetime when this artifact was created

Source code in src/workbench/core/artifacts/endpoint_core.py
def created(self) -> datetime:
    """Return the datetime when this artifact was created"""
    return self.endpoint_meta["CreationTime"]

delete()

"Delete an existing Endpoint: Underlying Models, Configuration, and Endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def delete(self):
    """ "Delete an existing Endpoint: Underlying Models, Configuration, and Endpoint"""
    if not self.exists():
        self.log.warning(f"Trying to delete an Model that doesn't exist: {self.uuid}")

    # Remove this endpoint from the list of registered endpoints
    self.log.info(f"Removing {self.uuid} from the list of registered endpoints...")
    ModelCore(self.model_name).remove_endpoint(self.uuid)

    # Call the Class Method to delete the Endpoint
    EndpointCore.managed_delete(endpoint_name=self.uuid)

delete_endpoint_models(endpoint_name) classmethod

Delete the underlying Model for an Endpoint

Parameters:

Name Type Description Default
endpoint_name str

The name of the endpoint to delete

required
Source code in src/workbench/core/artifacts/endpoint_core.py
@classmethod
def delete_endpoint_models(cls, endpoint_name: str):
    """Delete the underlying Model for an Endpoint

    Args:
        endpoint_name (str): The name of the endpoint to delete
    """

    # Grab the Endpoint Config Name from AWS
    endpoint_config_name = cls.sm_client.describe_endpoint(EndpointName=endpoint_name)["EndpointConfigName"]

    # Retrieve the Model Names from the Endpoint Config
    try:
        endpoint_config = cls.sm_client.describe_endpoint_config(EndpointConfigName=endpoint_config_name)
    except botocore.exceptions.ClientError:
        cls.log.info(f"Endpoint Config {endpoint_config_name} doesn't exist...")
        return
    model_names = [variant["ModelName"] for variant in endpoint_config["ProductionVariants"]]
    for model_name in model_names:
        cls.log.info(f"Deleting Internal Model {model_name}...")
        try:
            cls.sm_client.delete_model(ModelName=model_name)
        except botocore.exceptions.ClientError as error:
            error_code = error.response["Error"]["Code"]
            error_message = error.response["Error"]["Message"]
            if error_code == "ResourceInUse":
                cls.log.warning(f"Model {model_name} is still in use...")
            else:
                cls.log.warning(f"Error: {error_code} - {error_message}")

details()

Additional Details about this Endpoint

Returns:

Name Type Description
dict dict

A dictionary of details about this Endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def details(self) -> dict:
    """Additional Details about this Endpoint

    Returns:
        dict(dict): A dictionary of details about this Endpoint
    """

    # Fill in all the details about this Endpoint
    details = self.summary()

    # Get details from our AWS Metadata
    details["status"] = self.endpoint_meta["EndpointStatus"]
    details["instance"] = self.endpoint_meta["InstanceType"]
    try:
        details["instance_count"] = self.endpoint_meta["ProductionVariants"][0]["CurrentInstanceCount"] or "-"
    except KeyError:
        details["instance_count"] = "-"
    if "ProductionVariants" in self.endpoint_meta:
        details["variant"] = self.endpoint_meta["ProductionVariants"][0]["VariantName"]
    else:
        details["variant"] = "-"

    # Add endpoint metrics from CloudWatch
    details["endpoint_metrics"] = self.endpoint_metrics()

    # Return the details
    return details

endpoint_metrics()

Return the metrics for this endpoint

Returns:

Type Description
Union[DataFrame, None]

pd.DataFrame: DataFrame with the metrics for this endpoint (or None if no metrics)

Source code in src/workbench/core/artifacts/endpoint_core.py
def endpoint_metrics(self) -> Union[pd.DataFrame, None]:
    """Return the metrics for this endpoint

    Returns:
        pd.DataFrame: DataFrame with the metrics for this endpoint (or None if no metrics)
    """

    # Do we have it cached?
    metrics_key = f"endpoint:{self.uuid}:endpoint_metrics"
    endpoint_metrics = self.temp_storage.get(metrics_key)
    if endpoint_metrics is not None:
        return endpoint_metrics

    # We don't have it cached so let's get it from CloudWatch
    if "ProductionVariants" not in self.endpoint_meta:
        return None
    self.log.important("Updating endpoint metrics...")
    variant = self.endpoint_meta["ProductionVariants"][0]["VariantName"]
    endpoint_metrics = EndpointMetrics().get_metrics(self.uuid, variant=variant)
    self.temp_storage.set(metrics_key, endpoint_metrics)
    return endpoint_metrics

exists()

Does the feature_set_name exist in the AWS Metadata?

Source code in src/workbench/core/artifacts/endpoint_core.py
def exists(self) -> bool:
    """Does the feature_set_name exist in the AWS Metadata?"""
    if self.endpoint_meta is None:
        self.log.debug(f"Endpoint {self.endpoint_name} not found in AWS Metadata")
        return False
    return True

fast_inference(eval_df, threads=4)

Run inference on the Endpoint using the provided DataFrame

Parameters:

Name Type Description Default
eval_df DataFrame

The DataFrame to run predictions on

required
threads int

The number of threads to use (default: 4)

4

Returns:

Type Description
DataFrame

pd.DataFrame: The DataFrame with predictions

Note

There's no sanity checks or error handling... just FAST Inference!

Source code in src/workbench/core/artifacts/endpoint_core.py
def fast_inference(self, eval_df: pd.DataFrame, threads: int = 4) -> pd.DataFrame:
    """Run inference on the Endpoint using the provided DataFrame

    Args:
        eval_df (pd.DataFrame): The DataFrame to run predictions on
        threads (int): The number of threads to use (default: 4)

    Returns:
        pd.DataFrame: The DataFrame with predictions

    Note:
        There's no sanity checks or error handling... just FAST Inference!
    """
    return fast_inference(self.uuid, eval_df, self.sm_session, threads=threads)

generate_confusion_matrix(target_column, prediction_df)

Compute the confusion matrix for this Endpoint Args: target_column (str): Name of the target column prediction_df (pd.DataFrame): DataFrame with the prediction results Returns: pd.DataFrame: DataFrame with the confusion matrix

Source code in src/workbench/core/artifacts/endpoint_core.py
def generate_confusion_matrix(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
    """Compute the confusion matrix for this Endpoint
    Args:
        target_column (str): Name of the target column
        prediction_df (pd.DataFrame): DataFrame with the prediction results
    Returns:
        pd.DataFrame: DataFrame with the confusion matrix
    """

    y_true = prediction_df[target_column]
    prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
    y_pred = prediction_df[prediction_col]

    # Check if our model has class labels, if not we'll use the unique labels in the prediction
    class_labels = ModelCore(self.model_name).class_labels()
    if class_labels is None:
        class_labels = sorted(list(set(y_true) | set(y_pred)))

    # Compute the confusion matrix (sklearn confusion_matrix)
    conf_mtx = confusion_matrix(y_true, y_pred, labels=class_labels)

    # Create a DataFrame
    conf_mtx_df = pd.DataFrame(conf_mtx, index=class_labels, columns=class_labels)
    conf_mtx_df.index.name = "labels"

    # Check if our model has class labels. If so make the index and columns ordered
    model_class_labels = ModelCore(self.model_name).class_labels()
    if model_class_labels:
        self.log.important("Reordering the confusion matrix based on model class labels...")
        conf_mtx_df.index = pd.Categorical(conf_mtx_df.index, categories=model_class_labels, ordered=True)
        conf_mtx_df.columns = pd.Categorical(conf_mtx_df.columns, categories=model_class_labels, ordered=True)
        conf_mtx_df = conf_mtx_df.sort_index().sort_index(axis=1)
    return conf_mtx_df

get_monitor()

Get the MonitorCore class for this endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def get_monitor(self):
    """Get the MonitorCore class for this endpoint"""
    from workbench.core.artifacts.monitor_core import MonitorCore

    return MonitorCore(self.endpoint_name)

hash()

Return the hash for the internal model used by this endpoint

Returns:

Type Description
Optional[str]

Optional[str]: The hash for the internal model used by this endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def hash(self) -> Optional[str]:
    """Return the hash for the internal model used by this endpoint

    Returns:
        Optional[str]: The hash for the internal model used by this endpoint
    """
    model_url = self.model_data_url()
    return compute_s3_object_hash(model_url, self.boto3_session)

health_check()

Perform a health check on this model

Returns:

Type Description
list[str]

list[str]: List of health issues

Source code in src/workbench/core/artifacts/endpoint_core.py
def health_check(self) -> list[str]:
    """Perform a health check on this model

    Returns:
        list[str]: List of health issues
    """
    if not self.ready():
        return ["needs_onboard"]

    # Call the base class health check
    health_issues = super().health_check()

    # Does this endpoint have a config?
    # Note: This is not an authoritative check, so improve later
    if self.endpoint_meta.get("ProductionVariants") is None:
        health_issues.append("no_config")

    # We're going to check for 5xx errors and no activity
    endpoint_metrics = self.endpoint_metrics()

    # Check if we have metrics
    if endpoint_metrics is None:
        health_issues.append("unknown_error")
        return health_issues

    # Check for 5xx errors
    num_errors = endpoint_metrics["Invocation5XXErrors"].sum()
    if num_errors > 5:
        health_issues.append("5xx_errors")
    elif num_errors > 0:
        health_issues.append("5xx_errors_min")
    else:
        self.remove_health_tag("5xx_errors")
        self.remove_health_tag("5xx_errors_min")

    # Check for Endpoint activity
    num_invocations = endpoint_metrics["Invocations"].sum()
    if num_invocations == 0:
        health_issues.append("no_activity")
    else:
        self.remove_health_tag("no_activity")
    return health_issues

inference(eval_df, capture_uuid=None, id_column=None, drop_error_rows=False)

Run inference and compute performance metrics with optional capture

Parameters:

Name Type Description Default
eval_df DataFrame

DataFrame to run predictions on (must have superset of features)

required
capture_uuid str

UUID of the inference capture (default=None)

None
id_column str

Name of the ID column (default=None)

None
drop_error_rows bool

If True, drop rows that had endpoint errors/issues (default=False)

False

Returns:

Type Description
DataFrame

pd.DataFrame: DataFrame with the inference results

Note

If capture=True inference/performance metrics are written to S3 Endpoint Inference Folder

Source code in src/workbench/core/artifacts/endpoint_core.py
def inference(
    self, eval_df: pd.DataFrame, capture_uuid: str = None, id_column: str = None, drop_error_rows: bool = False
) -> pd.DataFrame:
    """Run inference and compute performance metrics with optional capture

    Args:
        eval_df (pd.DataFrame): DataFrame to run predictions on (must have superset of features)
        capture_uuid (str, optional): UUID of the inference capture (default=None)
        id_column (str, optional): Name of the ID column (default=None)
        drop_error_rows (bool, optional): If True, drop rows that had endpoint errors/issues (default=False)

    Returns:
        pd.DataFrame: DataFrame with the inference results

    Note:
        If capture=True inference/performance metrics are written to S3 Endpoint Inference Folder
    """

    # Check if this is a 'floating endpoint' (no model)
    if self.get_input() == "unknown":
        self.log.important("No model associated with this endpoint, running 'no frills' inference...")
        return self.fast_inference(eval_df)

    # Run predictions on the evaluation data
    prediction_df = self._predict(eval_df, drop_error_rows)
    if prediction_df.empty:
        self.log.warning("No predictions were made. Returning empty DataFrame.")
        return prediction_df

    # Get the target column
    model = ModelCore(self.model_name)
    target_column = model.target()

    # Sanity Check that the target column is present
    if target_column and (target_column not in prediction_df.columns):
        self.log.important(f"Target Column {target_column} not found in prediction_df!")
        self.log.important("In order to compute metrics, the target column must be present!")
        return prediction_df

    # Compute the standard performance metrics for this model
    model_type = model.model_type
    if model_type in [ModelType.REGRESSOR, ModelType.QUANTILE_REGRESSOR, ModelType.ENSEMBLE_REGRESSOR]:
        prediction_df = self.residuals(target_column, prediction_df)
        metrics = self.regression_metrics(target_column, prediction_df)
    elif model_type == ModelType.CLASSIFIER:
        metrics = self.classification_metrics(target_column, prediction_df)
    else:
        # For other model types, we don't compute metrics
        self.log.info(f"Model Type: {model_type} doesn't have metrics...")
        metrics = pd.DataFrame()

    # Print out the metrics
    if not metrics.empty:
        print(f"Performance Metrics for {self.model_name} on {self.uuid}")
        print(metrics.head())

        # Capture the inference results and metrics
        if capture_uuid is not None:
            description = capture_uuid.replace("_", " ").title()
            features = model.features()
            self._capture_inference_results(
                capture_uuid, prediction_df, target_column, model_type, metrics, description, features, id_column
            )

    # Return the prediction DataFrame
    return prediction_df

is_serverless()

Check if the current endpoint is serverless.

Returns:

Name Type Description
bool bool

True if the endpoint is serverless, False otherwise.

Source code in src/workbench/core/artifacts/endpoint_core.py
def is_serverless(self) -> bool:
    """Check if the current endpoint is serverless.

    Returns:
        bool: True if the endpoint is serverless, False otherwise.
    """
    return "Serverless" in self.endpoint_meta["InstanceType"]

managed_delete(endpoint_name) classmethod

Delete the Endpoint and associated resources if it exists

Source code in src/workbench/core/artifacts/endpoint_core.py
@classmethod
def managed_delete(cls, endpoint_name: str):
    """Delete the Endpoint and associated resources if it exists"""

    # Check if the endpoint exists
    try:
        endpoint_info = cls.sm_client.describe_endpoint(EndpointName=endpoint_name)
    except ClientError as e:
        if e.response["Error"]["Code"] in ["ValidationException", "ResourceNotFound"]:
            cls.log.info(f"Endpoint {endpoint_name} not found!")
            return
        raise  # Re-raise unexpected errors

    # Delete underlying models (Endpoints store/use models internally)
    cls.delete_endpoint_models(endpoint_name)

    # Get Endpoint Config Name and delete if exists
    endpoint_config_name = endpoint_info["EndpointConfigName"]
    try:
        cls.log.info(f"Deleting Endpoint Config {endpoint_config_name}...")
        cls.sm_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
    except ClientError:
        cls.log.info(f"Endpoint Config {endpoint_config_name} not found...")

    # Delete any monitoring schedules associated with the endpoint
    monitoring_schedules = cls.sm_client.list_monitoring_schedules(EndpointName=endpoint_name)[
        "MonitoringScheduleSummaries"
    ]
    for schedule in monitoring_schedules:
        cls.log.info(f"Deleting Monitoring Schedule {schedule['MonitoringScheduleName']}...")
        cls.sm_client.delete_monitoring_schedule(MonitoringScheduleName=schedule["MonitoringScheduleName"])

    # Recursively delete all endpoint S3 artifacts (inference, data capture, monitoring, etc)
    base_endpoint_path = f"{cls.endpoints_s3_path}/{endpoint_name}"
    s3_objects = wr.s3.list_objects(base_endpoint_path, boto3_session=cls.boto3_session)
    cls.log.info(f"Deleting S3 Objects at {base_endpoint_path}...")
    cls.log.info(f"{s3_objects}")
    wr.s3.delete_objects(s3_objects, boto3_session=cls.boto3_session)

    # Delete any dataframes that were stored in the Dataframe Cache
    cls.log.info("Deleting Dataframe Cache...")
    cls.df_cache.delete_recursive(endpoint_name)

    # Delete the endpoint
    cls.log.info(f"Deleting Endpoint {endpoint_name}...")
    time.sleep(10)  # Allow AWS to catch up
    try:
        cls.sm_client.delete_endpoint(EndpointName=endpoint_name)
    except ClientError as e:
        cls.log.error("Error deleting endpoint.")
        raise e

    time.sleep(5)  # Final sleep for AWS to fully register deletions

model_data_url()

Return the model data URL for this endpoint

Returns:

Type Description
Optional[str]

Optional[str]: The model data URL for this endpoint

Source code in src/workbench/core/artifacts/endpoint_core.py
def model_data_url(self) -> Optional[str]:
    """Return the model data URL for this endpoint

    Returns:
        Optional[str]: The model data URL for this endpoint
    """
    from workbench.utils.endpoint_utils import internal_model_data_url  # Avoid circular import

    return internal_model_data_url(self.endpoint_config_name(), self.boto3_session)

modified()

Return the datetime when this artifact was last modified

Source code in src/workbench/core/artifacts/endpoint_core.py
def modified(self) -> datetime:
    """Return the datetime when this artifact was last modified"""
    return self.endpoint_meta["LastModifiedTime"]

onboard(interactive=False)

This is a BLOCKING method that will onboard the Endpoint (make it ready) Args: interactive (bool, optional): If True, will prompt the user for information. (default: False) Returns: bool: True if the Endpoint is successfully onboarded, False otherwise

Source code in src/workbench/core/artifacts/endpoint_core.py
def onboard(self, interactive: bool = False) -> bool:
    """This is a BLOCKING method that will onboard the Endpoint (make it ready)
    Args:
        interactive (bool, optional): If True, will prompt the user for information. (default: False)
    Returns:
        bool: True if the Endpoint is successfully onboarded, False otherwise
    """

    # Make sure our input is defined
    if self.get_input() == "unknown":
        if interactive:
            input_model = input("Input Model?: ")
        else:
            self.log.critical("Input Model is not defined!")
            return False
    else:
        input_model = self.get_input()

    # Now that we have the details, let's onboard the Endpoint with args
    return self.onboard_with_args(input_model)

onboard_with_args(input_model)

Onboard the Endpoint with the given arguments

Parameters:

Name Type Description Default
input_model str

The input model for this endpoint

required

Returns: bool: True if the Endpoint is successfully onboarded, False otherwise

Source code in src/workbench/core/artifacts/endpoint_core.py
def onboard_with_args(self, input_model: str) -> bool:
    """Onboard the Endpoint with the given arguments

    Args:
        input_model (str): The input model for this endpoint
    Returns:
        bool: True if the Endpoint is successfully onboarded, False otherwise
    """
    # Set the status to onboarding
    self.set_status("onboarding")

    self.upsert_workbench_meta({"workbench_input": input_model})
    self.model_name = input_model

    # Remove the needs_onboard tag
    self.remove_health_tag("needs_onboard")
    self.set_status("ready")

    # Run a health check and refresh the meta
    time.sleep(2)  # Give the AWS Metadata a chance to update
    self.health_check()
    self.refresh_meta()
    self.details()
    return True

refresh_meta()

Refresh the Artifact's metadata

Source code in src/workbench/core/artifacts/endpoint_core.py
def refresh_meta(self):
    """Refresh the Artifact's metadata"""
    self.endpoint_meta = self.meta.endpoint(self.endpoint_name)

regression_metrics(target_column, prediction_df)

Compute the performance metrics for this Endpoint Args: target_column (str): Name of the target column prediction_df (pd.DataFrame): DataFrame with the prediction results Returns: pd.DataFrame: DataFrame with the performance metrics

Source code in src/workbench/core/artifacts/endpoint_core.py
def regression_metrics(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
    """Compute the performance metrics for this Endpoint
    Args:
        target_column (str): Name of the target column
        prediction_df (pd.DataFrame): DataFrame with the prediction results
    Returns:
        pd.DataFrame: DataFrame with the performance metrics
    """

    # Sanity Check the prediction DataFrame
    if prediction_df.empty:
        self.log.warning("No predictions were made. Returning empty DataFrame.")
        return pd.DataFrame()

    # Compute the metrics
    try:
        y_true = prediction_df[target_column]
        prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
        y_pred = prediction_df[prediction_col]

        mae = mean_absolute_error(y_true, y_pred)
        rmse = np.sqrt(mean_squared_error(y_true, y_pred))
        r2 = r2_score(y_true, y_pred)
        # Mean Absolute Percentage Error
        mape = np.mean(np.where(y_true != 0, np.abs((y_true - y_pred) / y_true), np.abs(y_true - y_pred))) * 100
        # Median Absolute Error
        medae = median_absolute_error(y_true, y_pred)

        # Organize and return the metrics
        metrics = {
            "MAE": round(mae, 3),
            "RMSE": round(rmse, 3),
            "R2": round(r2, 3),
            "MAPE": round(mape, 3),
            "MedAE": round(medae, 3),
            "NumRows": len(prediction_df),
        }
        return pd.DataFrame.from_records([metrics])
    except Exception as e:
        self.log.warning(f"Error computing regression metrics: {str(e)}")
        return pd.DataFrame()

residuals(target_column, prediction_df)

Add the residuals to the prediction DataFrame Args: target_column (str): Name of the target column prediction_df (pd.DataFrame): DataFrame with the prediction results Returns: pd.DataFrame: DataFrame with two new columns called 'residuals' and 'residuals_abs'

Source code in src/workbench/core/artifacts/endpoint_core.py
def residuals(self, target_column: str, prediction_df: pd.DataFrame) -> pd.DataFrame:
    """Add the residuals to the prediction DataFrame
    Args:
        target_column (str): Name of the target column
        prediction_df (pd.DataFrame): DataFrame with the prediction results
    Returns:
        pd.DataFrame: DataFrame with two new columns called 'residuals' and 'residuals_abs'
    """

    # Compute the residuals
    y_true = prediction_df[target_column]
    prediction_col = "prediction" if "prediction" in prediction_df.columns else "predictions"
    y_pred = prediction_df[prediction_col]

    # Check for classification scenario
    if not pd.api.types.is_numeric_dtype(y_true) or not pd.api.types.is_numeric_dtype(y_pred):
        self.log.warning("Target and Prediction columns are not numeric. Computing 'diffs'...")
        prediction_df["residuals"] = (y_true != y_pred).astype(int)
        prediction_df["residuals_abs"] = prediction_df["residuals"]
    else:
        # Compute numeric residuals for regression
        prediction_df["residuals"] = y_true - y_pred
        prediction_df["residuals_abs"] = np.abs(prediction_df["residuals"])

    return prediction_df

set_input(input, force=False)

Override: Set the input data for this artifact

Parameters:

Name Type Description Default
input str

Name of input for this artifact

required
force bool

Force the input to be set. Defaults to False.

False

Note: We're going to not allow this to be used for Models

Source code in src/workbench/core/artifacts/endpoint_core.py
def set_input(self, input: str, force=False):
    """Override: Set the input data for this artifact

    Args:
        input (str): Name of input for this artifact
        force (bool, optional): Force the input to be set. Defaults to False.
    Note:
        We're going to not allow this to be used for Models
    """
    if not force:
        self.log.warning(f"Endpoint {self.uuid}: Does not allow manual override of the input!")
        return

    # Okay we're going to allow this to be set
    self.log.important(f"{self.uuid}: Setting input to {input}...")
    self.log.important("Be careful with this! It breaks automatic provenance of the artifact!")
    self.upsert_workbench_meta({"workbench_input": input})

size()

Return the size of this data in MegaBytes

Source code in src/workbench/core/artifacts/endpoint_core.py
def size(self) -> float:
    """Return the size of this data in MegaBytes"""
    return 0.0

validate_proba_columns(prediction_df, class_labels, guessing=False) staticmethod

Ensure probability columns are correctly aligned with class labels

Parameters:

Name Type Description Default
prediction_df DataFrame

DataFrame with the prediction results

required
class_labels list

List of class labels

required
guessing bool

Whether we're guessing the class labels. Defaults to False.

False
Source code in src/workbench/core/artifacts/endpoint_core.py
@staticmethod
def validate_proba_columns(prediction_df: pd.DataFrame, class_labels: list, guessing: bool = False):
    """Ensure probability columns are correctly aligned with class labels

    Args:
        prediction_df (pd.DataFrame): DataFrame with the prediction results
        class_labels (list): List of class labels
        guessing (bool, optional): Whether we're guessing the class labels. Defaults to False.
    """
    proba_columns = [col.replace("_proba", "") for col in prediction_df.columns if col.endswith("_proba")]

    if sorted(class_labels) != sorted(proba_columns):
        if guessing:
            raise ValueError(f"_proba columns {proba_columns} != GUESSED class_labels {class_labels}!")
        else:
            raise ValueError(f"_proba columns {proba_columns} != class_labels {class_labels}!")