Artifact
API Classes
Found a method here you want to use? The API Classes have method pass-through so just call the method on the any class that inherits from the Artifact Class and voilà it works the same.
The Workbench Artifact class is a base/abstract class that defines API implemented by all the child classes (DataSource, FeatureSet, Model, Endpoint).
Artifact: Abstract Base Class for all Artifact classes in Workbench. Artifacts simply reflect and aggregate one or more AWS Services
Artifact
Bases: ABC
Artifact: Abstract Base Class for all Artifact classes in Workbench
Source code in src/workbench/core/artifacts/artifact.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
__init__(uuid, use_cached_meta=False)
Initialize the Artifact Base Class
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uuid
|
str
|
The UUID of this artifact |
required |
use_cached_meta
|
bool
|
Should we use cached metadata? (default: False) |
False
|
Source code in src/workbench/core/artifacts/artifact.py
__post_init__()
Artifact Post Initialization
Source code in src/workbench/core/artifacts/artifact.py
__repr__()
String representation of this artifact
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
String representation of this artifact |
Source code in src/workbench/core/artifacts/artifact.py
add_tag(tag, tag_type='user')
Add a tag for this artifact, ensuring no duplicates and maintaining order. Args: tag (str): Tag to add for this artifact tag_type (str): Type of tag to add (user or health)
Source code in src/workbench/core/artifacts/artifact.py
arn()
abstractmethod
aws_meta()
abstractmethod
aws_url()
abstractmethod
created()
abstractmethod
delete()
abstractmethod
delete_metadata(key_to_delete)
Delete specific metadata from this artifact Args: key_to_delete (str): Metadata key to delete
Source code in src/workbench/core/artifacts/artifact.py
details()
abstractmethod
exists()
abstractmethod
expected_meta()
Metadata we expect to see for this Artifact when it's ready Returns: list[str]: List of expected metadata keys
Source code in src/workbench/core/artifacts/artifact.py
generate_valid_name(name, delimiter='_', lower_case=True)
staticmethod
Only allow letters and the specified delimiter, also lowercase the string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name/id string to check. |
required |
delimiter
|
str
|
The delimiter to use in the name/id string (default: "_") |
'_'
|
lower_case
|
bool
|
Should the name be lowercased? (default: True) |
True
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A generated valid name/id. |
Source code in src/workbench/core/artifacts/artifact.py
get_input()
get_owner()
get_status()
get_tags(tag_type='user')
Get the tags for this artifact Args: tag_type (str): Type of tags to return (user or health) Returns: list[str]: List of tags for this artifact
Source code in src/workbench/core/artifacts/artifact.py
hash()
abstractmethod
health_check()
Perform a health check on this artifact Returns: list[str]: List of health issues
Source code in src/workbench/core/artifacts/artifact.py
is_name_valid(name, delimiter='_', lower_case=True)
classmethod
Check if the name adheres to the naming conventions for this Artifact.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name/id to check. |
required |
delimiter
|
str
|
The delimiter to use in the name/id string (default: "_") |
'_'
|
lower_case
|
bool
|
Should the name be lowercased? (default: True) |
True
|
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the name is valid, False otherwise. |
Source code in src/workbench/core/artifacts/artifact.py
modified()
abstractmethod
onboard()
abstractmethod
Onboard this Artifact into Workbench Returns: bool: True if the Artifact was successfully onboarded, False otherwise
ready()
Is the Artifact ready? Is initial setup complete and expected metadata populated?
Source code in src/workbench/core/artifacts/artifact.py
refresh_meta()
abstractmethod
remove_workbench_meta(key_to_remove)
Remove Workbench specific metadata from this Artifact Args: key_to_remove (str): The metadata key to remove Note: This functionality will work for FeatureSets, Models, and Endpoints but not for DataSources. The DataSource class overrides this method.
Source code in src/workbench/core/artifacts/artifact.py
remove_workbench_tag(tag, tag_type='user')
Remove a tag from this artifact if it exists. Args: tag (str): Tag to remove from this artifact tag_type (str): Type of tag to remove (user or health)
Source code in src/workbench/core/artifacts/artifact.py
set_input(input_data)
Set the input data for this artifact
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_data
|
str
|
Name of input data for this artifact |
required |
Note: This breaks the official provenance of the artifact, so use with caution.
Source code in src/workbench/core/artifacts/artifact.py
set_owner(owner)
Set the owner of this artifact
Parameters:
Name | Type | Description | Default |
---|---|---|---|
owner
|
str
|
Owner to set for this artifact |
required |
set_status(status)
Set the status for this artifact Args: status (str): Status to set for this artifact
size()
abstractmethod
summary()
This is generic summary information for all Artifacts. If you want to get more detailed information, call the details() method which is implemented by the specific Artifact class
Source code in src/workbench/core/artifacts/artifact.py
upsert_workbench_meta(new_meta)
Add Workbench specific metadata to this Artifact Args: new_meta (dict): Dictionary of NEW metadata to add Note: This functionality will work for FeatureSets, Models, and Endpoints but not for DataSources. The DataSource class overrides this method.
Source code in src/workbench/core/artifacts/artifact.py
workbench_meta()
Get the Workbench specific metadata for this Artifact
Returns:
Type | Description |
---|---|
Union[dict, None]
|
Union[dict, None]: Dictionary of Workbench metadata for this Artifact |
This functionality will work for FeatureSets, Models, and Endpoints
but not for DataSources and Graphs, those classes need to override this method.