Workbench Parameter Storage
The Parameter Store is a great place to publish data (strings, lists, dictionaries, etc). The service is provided on all AWS accounts and allows ML pipelines to create, store, and read data.
Bypassing the 4k Limit
AWS Parameter Storage has a 4k limit on values, the Workbench class bypasses this limit by detecting large values (strings, data, whatever) and compressing those on the fly. The decompressing is also handled automatically.
Examples
These example show how to use the ParameterStore() class to list, add, and get parameters from the AWS Parameter Store Service.
Workbench REPL
If you'd like to experiment with listing, adding, and getting data with the ParameterStore() class, you can spin up the Workbench REPL, use the class and test out all the methods. Try it out! Workbench REPL
from workbench.api import ParameterStore
params = ParameterStore()
# List Parameters
params.list()
['/workbench/abalone_info',
'/workbench/my_data',
'/workbench/test',
'/workbench/pipelines/my_pipeline']
# Add Key
params.upsert("key", "value")
value = params.get("key")
# Add any data (lists, dictionaries, etc..)
my_data = {"key": "value", "number": 4.2, "list": [1,2,3]}
params.upsert("my_data", my_data)
# Retrieve data
return_value = params.get("my_data")
pprint(return_value)
{'key': 'value', 'list': [1, 2, 3], 'number': 4.2}
# Delete parameters
param_store.delete("my_data")
list() not showing ALL parameters?
If you want access to ALL the parameters in the parameter store set prefix=None and everything will show up.
ParameterStore: Manages Workbench parameters in a Cloud Based Parameter Store.
ParameterStore
Bases: ParameterStoreCore
ParameterStore: Manages Workbench parameters in a Cloud Based Parameter Store.
Common Usage
params = ParameterStore()
# List Parameters
params.list()
['/workbench/abalone_info',
'/workbench/my_data',
'/workbench/test',
'/workbench/pipelines/my_pipeline']
# Add Key
params.upsert("key", "value")
value = params.get("key")
# Add any data (lists, dictionaries, etc..)
my_data = {"key": "value", "number": 4.2, "list": [1,2,3]}
params.upsert("my_data", my_data)
# Retrieve data
return_value = params.get("my_data")
pprint(return_value)
{'key': 'value', 'list': [1, 2, 3], 'number': 4.2}
# Delete parameters
param_store.delete("my_data")