Workbench Parameter Storage
The Parameter Store is a great place to publish data (strings, lists, dictionaries, etc). The service is provided on all AWS accounts and allows ML pipelines to create, store, and read data.
Bypassing the 4k Limit
AWS Parameter Storage has a 4k limit on values, the Workbench class bypasses this limit by detecting large values (strings, data, whatever) and compressing those on the fly. The decompressing is also handled automatically.
Examples
These example show how to use the ParameterStore()
class to list, add, and get parameters from the AWS Parameter Store Service.
Workbench REPL
If you'd like to experiment with listing, adding, and getting data with the ParameterStore()
class, you can spin up the Workbench REPL, use the class and test out all the methods. Try it out! Workbench REPL
from workbench.api import ParameterStore
params = ParameterStore()
# List Parameters
params.list()
['/workbench/abalone_info',
'/workbench/my_data',
'/workbench/test',
'/workbench/pipelines/my_pipeline']
# Add Key
params.upsert("key", "value")
value = params.get("key")
# Add any data (lists, dictionaries, etc..)
my_data = {"key": "value", "number": 4.2, "list": [1,2,3]}
params.upsert("my_data", my_data)
# Retrieve data
return_value = params.get("my_data")
pprint(return_value)
{'key': 'value', 'list': [1, 2, 3], 'number': 4.2}
# Delete parameters
param_store.delete("my_data")
list()
not showing ALL parameters?
If you want access to ALL the parameters in the parameter store set prefix=None
and everything will show up.
ParameterStore: Manages Workbench parameters in a Cloud Based Parameter Store.
ParameterStore
Bases: AWSParameterStore
ParameterStore: Manages Workbench parameters in a Cloud Based Parameter Store.
Common Usage
params = ParameterStore()
# List Parameters
params.list()
['/workbench/abalone_info',
'/workbench/my_data',
'/workbench/test',
'/workbench/pipelines/my_pipeline']
# Add Key
params.upsert("key", "value")
value = params.get("key")
# Add any data (lists, dictionaries, etc..)
my_data = {"key": "value", "number": 4.2, "list": [1,2,3]}
params.upsert("my_data", my_data)
# Retrieve data
return_value = params.get("my_data")
pprint(return_value)
{'key': 'value', 'list': [1, 2, 3], 'number': 4.2}
# Delete parameters
param_store.delete("my_data")
Source code in src/workbench/api/parameter_store.py
__init__()
__repr__()
delete(name)
Delete a parameter from the AWS Parameter Store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the parameter to delete. |
required |
get(name, warn=True, decrypt=True)
Retrieve a parameter value from the AWS Parameter Store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the parameter to retrieve. |
required |
warn
|
bool
|
Whether to log a warning if the parameter is not found. |
True
|
decrypt
|
bool
|
Whether to decrypt secure string parameters. |
True
|
Returns:
Type | Description |
---|---|
Union[str, list, dict, None]
|
Union[str, list, dict, None]: The value of the parameter or None if not found. |
Source code in src/workbench/api/parameter_store.py
list(prefix=None)
List all parameters in the AWS Parameter Store, optionally filtering by a prefix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prefix
|
str
|
A prefix to filter the parameters by. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
A list of parameter names and details. |
Source code in src/workbench/api/parameter_store.py
upsert(name, value, overwrite=True)
Insert or update a parameter in the AWS Parameter Store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the parameter. |
required |
value
|
str | list | dict
|
The value of the parameter. |
required |
overwrite
|
bool
|
Whether to overwrite an existing parameter (default: True) |
True
|