Model
Model Examples
Examples of using the Model Class are in the Examples section at the bottom of this page. AWS Model setup and deployment are quite complicated to do manually but the Workbench Model Class makes it a breeze!
Model: Manages AWS Model Package/Group creation and management.
Models are automatically set up and provisioned for deployment into AWS. Models can be viewed in the AWS Sagemaker interfaces or in the Workbench Dashboard UI, which provides additional model details and performance metrics
Model
Bases: ModelCore
Model: Workbench Model API Class.
Source code in src/workbench/api/model.py
details(**kwargs)
Retrieve the Model Details.
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
A dictionary of details about the Model |
to_endpoint(name=None, tags=None, serverless=True)
Create an Endpoint from the Model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Set the name for the endpoint. If not specified, an automatic name will be generated |
None
|
tags
|
list
|
Set the tags for the endpoint. If not specified automatic tags will be generated. |
None
|
serverless
|
bool
|
Set the endpoint to be serverless (default: True) |
True
|
Returns:
Name | Type | Description |
---|---|---|
Endpoint |
Endpoint
|
The Endpoint created from the Model |
Source code in src/workbench/api/model.py
Examples
All of the Workbench Examples are in the Workbench Repository under the examples/
directory. For a full code listing of any example please visit our Workbench Examples
Create a Model from a FeatureSet
from workbench.api.feature_set import FeatureSet
from workbench.api.model import ModelType
from pprint import pprint
# Grab a FeatureSet
my_features = FeatureSet("test_features")
# Create a Model from the FeatureSet
# Note: ModelTypes can be CLASSIFIER, REGRESSOR (XGBoost is default)
my_model = my_features.to_model(name="test-model",
model_type=ModelType.REGRESSOR,
target_column="iq_score")
pprint(my_model.details())
Output
{'approval_status': 'Approved',
'content_types': ['text/csv'],
...
'inference_types': ['ml.t2.medium'],
'input': 'test_features',
'model_metrics': metric_name value
0 RMSE 7.924
1 MAE 6.554,
2 R2 0.604,
'regression_predictions': iq_score prediction
0 136.519012 139.964460
1 133.616974 130.819950
2 122.495415 124.967834
3 133.279510 121.010284
4 127.881073 113.825005
...
'response_types': ['text/csv'],
'workbench_tags': ['test-model'],
'shapley_values': None,
'size': 0.0,
'status': 'Completed',
'transform_types': ['ml.m5.large'],
'uuid': 'test-model',
'version': 1}
Use a specific Scikit-Learn Model
from workbench.api.feature_set import FeatureSet
from pprint import pprint
# Grab a FeatureSet
my_features = FeatureSet("abalone_features")
# Transform FeatureSet into KNN Regression Model
# Note: model_class can be any sckit-learn model
# "KNeighborsRegressor", "BayesianRidge",
# "GaussianNB", "AdaBoostClassifier", etc
my_model = my_features.to_model(
scikit_model_class="KNeighborsRegressor",
model_import_str="from sklearn.neighbors import KNeighborsRegressor",
target_column="class_number_of_rings",
name="abalone-knn-reg",
description="Abalone KNN Regression",
tags=["abalone", "knn"],
train_all_data=True,
)
pprint(my_model.details())
from workbench.api.feature_set import FeatureSet
from pprint import pprint
# Grab a FeatureSet
my_features = FeatureSet("wine_features")
# Using a Scikit-Learn Model
# Note: model_class can be any sckit-learn model ("KMeans", "BayesianRidge",
# "GaussianNB", "AdaBoostClassifier", "Ridge, "Lasso", "SVC", "SVR", etc...)
my_model = my_features.to_model(
scikit_model_class="RandomForestClassifier",
model_import_str="from sklearn.ensemble import RandomForestClassifier",
target_column="wine_class",
name="wine-rfc-class",
description="Wine RandomForest Classification",
tags=["wine", "rfc"]
)
pprint(my_model.details())
Create an Endpoint from a Model
Endpoint Costs
Serverless endpoints are a great option, they have no AWS charges when not running. A realtime endpoint has less latency (no cold start) but AWS charges an hourly fee which can add up quickly!
from workbench.api.model import Model
# Grab the abalone regression Model
model = Model("abalone-regression")
# By default, an Endpoint is serverless, you can
# make a realtime endpoint with serverless=False
model.to_endpoint(name="abalone-regression-end",
tags=["abalone", "regression"],
serverless=True)
Model Health Check and Metrics
from workbench.api.model import Model
# Grab the abalone-regression Model
model = Model("abalone-regression")
# Perform a health check on the model
# Note: The health_check() method returns 'issues' if there are any
# problems, so if there are no issues, the model is healthy
health_issues = model.health_check()
if not health_issues:
print("Model is Healthy")
else:
print("Model has issues")
print(health_issues)
# Get the model metrics and regression predictions
print(model.model_metrics())
print(model.regression_predictions())
Output
Model is Healthy
metric_name value
0 RMSE 2.190
1 MAE 1.544
2 R2 0.504
class_number_of_rings prediction
0 9 8.648378
1 11 9.717787
2 11 10.933070
3 10 9.899738
4 9 10.014504
.. ... ...
495 10 10.261657
496 9 10.788254
497 13 7.779886
498 12 14.718514
499 13 10.637320
Workbench UI
Running these few lines of code creates an AWS Model Package Group and an AWS Model Package. These model artifacts can be viewed in the Sagemaker Console/Notebook interfaces or in the Workbench Dashboard UI.
Not Finding a particular method?
The Workbench API Classes use the 'Core' Classes Internally, so for an extensive listing of all the methods available please take a deep dive into: Workbench Core Classes