Meta
Meta Examples
Examples of using the Meta class are listed at the bottom of this page Examples.
Meta: A class that provides high level information and summaries of Cloud Platform Artifacts. The Meta class provides 'account' information, configuration, etc. It also provides metadata for Artifacts, such as Data Sources, Feature Sets, Models, and Endpoints.
Meta
Bases: CloudMeta
Meta: A class that provides metadata functionality for Cloud Platform Artifacts.
Common Usage
from workbench.api import Meta
meta = Meta()
# Get the AWS Account Info
meta.account()
meta.config()
# These are 'list' methods
meta.etl_jobs()
meta.data_sources()
meta.feature_sets(details=True/False)
meta.models(details=True/False)
meta.endpoints()
meta.views()
meta.pipelines()
# These are 'describe' methods
meta.data_source("abalone_data")
meta.feature_set("abalone_features")
meta.model("abalone-regression")
meta.endpoint("abalone-endpoint")
Source code in src/workbench/api/meta.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
account()
config()
Return the current Workbench Configuration
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
The current Workbench Configuration |
data_source(data_source_name, database='workbench')
Get the details of a specific Data Source
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_source_name
|
str
|
The name of the Data Source |
required |
database
|
str
|
The Glue database. Defaults to 'workbench'. |
'workbench'
|
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the Data Source (None if not found) |
Source code in src/workbench/api/meta.py
data_sources()
Get a summary of the Data Sources deployed in the Cloud Platform
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the Data Sources deployed in the Cloud Platform |
endpoint(endpoint_name)
Get the details of a specific Endpoint
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint_name
|
str
|
The name of the Endpoint |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the Endpoint (None if not found) |
Source code in src/workbench/api/meta.py
endpoints()
Get a summary of the Endpoints deployed in the Cloud Platform
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the Endpoints in the Cloud Platform |
etl_jobs()
Get summary data about Extract, Transform, Load (ETL) Jobs
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the ETL Jobs deployed in the Cloud Platform |
feature_set(feature_set_name)
Get the details of a specific Feature Set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_set_name
|
str
|
The name of the Feature Set |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the Feature Set (None if not found) |
Source code in src/workbench/api/meta.py
feature_sets(details=False)
Get a summary of the Feature Sets deployed in the Cloud Platform
Parameters:
Name | Type | Description | Default |
---|---|---|---|
details
|
bool
|
Include detailed information. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the Feature Sets deployed in the Cloud Platform |
Source code in src/workbench/api/meta.py
glue_job(job_name)
Get the details of a specific Glue Job
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_name
|
str
|
The name of the Glue Job |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the Glue Job (None if not found) |
Source code in src/workbench/api/meta.py
incoming_data()
Get summary data about data in the incoming raw data
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the incoming raw data |
model(model_name)
Get the details of a specific Model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
The name of the Model |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Union[dict, None]
|
The details of the Model (None if not found) |
Source code in src/workbench/api/meta.py
models(details=False)
Get a summary of the Models deployed in the Cloud Platform
Parameters:
Name | Type | Description | Default |
---|---|---|---|
details
|
bool
|
Include detailed information. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the Models deployed in the Cloud Platform |
Source code in src/workbench/api/meta.py
pipelines()
Get a summary of the ML Pipelines deployed in the Cloud Platform
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of the Pipelines in the Cloud Platform |
views(database='workbench')
Get a summary of the all the Views, for the given database, in AWS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
database
|
str
|
Glue database. Defaults to 'workbench'. |
'workbench'
|
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: A summary of all the Views, for the given database, in AWS |
Source code in src/workbench/api/meta.py
Examples
These example show how to use the Meta()
class to pull lists of artifacts from AWS. DataSources, FeatureSets, Models, Endpoints and more. If you're building a web interface plugin, the Meta class is a great place to start.
Workbench REPL
If you'd like to see exactly what data/details you get back from the Meta()
class, you can spin up the Workbench REPL, use the class and test out all the methods. Try it out! Workbench REPL
meta = Meta()
model_df = meta.models()
model_df
Model Group Health Owner ... Input Status Description
0 wine-classification healthy - ... wine_features Completed Wine Classification Model
1 abalone-regression-full healthy - ... abalone_features Completed Abalone Regression Model
2 abalone-regression healthy - ... abalone_features Completed Abalone Regression Model
[3 rows x 10 columns]
List the Models in AWS
from workbench.api import Meta
# Create our Meta Class and get a list of our Models
meta = Meta()
model_df = meta.models()
print(f"Number of Models: {len(model_df)}")
print(model_df)
# Get more details data on the Models
model_names = model_df["Model Group"].tolist()
for name in model_names:
pprint(meta.model(name))
Output
Number of Models: 3
Model Group Health Owner ... Input Status Description
0 wine-classification healthy - ... wine_features Completed Wine Classification Model
1 abalone-regression-full healthy - ... abalone_features Completed Abalone Regression Model
2 abalone-regression healthy - ... abalone_features Completed Abalone Regression Model
[3 rows x 10 columns]
wine-classification
abalone-regression-full
abalone-regression
Getting Model Performance Metrics
from workbench.api import Meta
# Create our Meta Class and get a list of our Models
meta = Meta()
model_df = meta.models()
print(f"Number of Models: {len(model_df)}")
print(model_df)
# Get more details data on the Models
model_names = model_df["Model Group"].tolist()
for name in model_names[:5]:
model_details = meta.model(name)
print(f"\n\nModel: {name}")
performance_metrics = model_details["workbench_meta"]["workbench_inference_metrics"]
print(f"\tPerformance Metrics: {performance_metrics}")
Output
wine-classification
ARN: arn:aws:sagemaker:us-west-2:507740646243:model-package-group/wine-classification
Description: Wine Classification Model
Tags: wine::classification
Performance Metrics:
[{'wine_class': 'TypeA', 'precision': 1.0, 'recall': 1.0, 'fscore': 1.0, 'roc_auc': 1.0, 'support': 12}, {'wine_class': 'TypeB', 'precision': 1.0, 'recall': 1.0, 'fscore': 1.0, 'roc_auc': 1.0, 'support': 14}, {'wine_class': 'TypeC', 'precision': 1.0, 'recall': 1.0, 'fscore': 1.0, 'roc_auc': 1.0, 'support': 9}]
abalone-regression
ARN: arn:aws:sagemaker:us-west-2:507740646243:model-package-group/abalone-regression
Description: Abalone Regression Model
Tags: abalone::regression
Performance Metrics:
[{'MAE': 1.64, 'RMSE': 2.246, 'R2': 0.502, 'MAPE': 16.393, 'MedAE': 1.209, 'NumRows': 834}]
List the Endpoints in AWS
from pprint import pprint
from workbench.api import Meta
# Create our Meta Class and get a list of our Endpoints
meta = Meta()
endpoint_df = meta.endpoints()
print(f"Number of Endpoints: {len(endpoint_df)}")
print(endpoint_df)
# Get more details data on the Endpoints
endpoint_names = endpoint_df["Name"].tolist()
for name in endpoint_names:
pprint(meta.endpoint(name))
Output
Number of Endpoints: 2
Name Health Instance Created ... Status Variant Capture Samp(%)
0 wine-classification-end healthy Serverless (2GB/5) 2024-03-23 23:09 ... InService AllTraffic False -
1 abalone-regression-end healthy Serverless (2GB/5) 2024-03-23 21:11 ... InService AllTraffic False -
[2 rows x 10 columns]
wine-classification-end
<lots of details about endpoints>
Not Finding some particular AWS Data?
The Workbench Meta API Class also has (details=True)
arguments, so make sure to check those out.