Skip to content

Workbench Docker Image for Lambdas

Using the Workbench Docker Image for AWS Lambda Jobs allows your Lambda Jobs to use and create AWS ML Pipeline Artifacts with Workbench.

AWS, for some reason, does not allow Public ECRs to be used for Lambda Docker images. So you'll have to copy the Docker image into your private ECR.

Creating a Private ECR

You only need to do this if you don't already have a private ECR.

AWS Console to create Private ECR

  1. Open the Amazon ECR console.
  2. Choose "Create repository".
  3. For "Repository name", enter workbench_base.
  4. Ensure "Private" is selected.
  5. Choose "Create repository".

Command Line to create Private ECR

Create the ECR repository using the AWS CLI:

aws ecr create-repository --repository-name workbench_base --region <region>

Pulling Docker Image into Private ECR

Note: You'll only need to do this when you want to update the Workbench Docker image

Pull the Workbench Public ECR Image

docker pull public.ecr.aws/m6i5k1r2/workbench_base:latest

Tag the image for your private ECR

docker tag public.ecr.aws/m6i5k1r2/workbench_base:latest \
<your-account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:latest

Push the image to your private ECR

aws ecr get-login-password --region <region> --profile <profile> | \
docker login --username AWS --password-stdin <account-id>.dkr.ecr.<region>.amazonaws.com

docker push <account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:<tag>

Using the Docker Image for your Lambdas

Okay, now that you have the Workbench Docker image in your private ECR, here's how you use that image for your Lambda jobs.

AWS Console

  1. Open the AWS Lambda console.
  2. Create a new function.
  3. Select "Container image".
  4. Use the ECR image URI: <account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:<tag>.

Command Line

Create the Lambda function using the AWS CLI:

aws lambda create-function \
 --region <region> \
 --function-name myLambdaFunction \
 --package-type Image \
 --code ImageUri=<account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:<tag> \
 --role arn:aws:iam::<account-id>:role/<execution-role>

Python CDK

Define the Lambda function in your CDK app:

from aws_cdk import (
   aws_lambda as _lambda,
   core
)

class MyLambdaStack(core.Stack):
   def __init__(self, scope: core.Construct, id: str, **kwargs) -> None:
       super().__init__(scope, id, **kwargs)

       _lambda.Function(self, "MyLambdaFunction",
                        code=_lambda.Code.from_ecr_image("<account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:<tag>"),
                        handler=_lambda.Handler.FROM_IMAGE,
                        runtime=_lambda.Runtime.FROM_IMAGE,
                        role=iam.Role.from_role_arn(self, "LambdaRole", "arn:aws:iam::<account-id>:role/<execution-role>"))

app = core.App()
MyLambdaStack(app, "MyLambdaStack")
app.synth()

Cloudformation

Define the Lambda function in your CloudFormation template.

Resources:
 MyLambdaFunction:
   Type: AWS::Lambda::Function
   Properties:
     Code:
       ImageUri: <account-id>.dkr.ecr.<region>.amazonaws.com/<private-repo>:<tag>
     Role: arn:aws:iam::<account-id>:role/<execution-role>
     PackageType: Image