DataLoaders Heavy
These DataLoader Classes are intended to load larger dataset into AWS. For large data we need to use AWS Glue Jobs/Batch Jobs and in general the process is a bit more complicated and has less features.
If you have smaller data please see DataLoaders Light
Welcome to the SageWorks DataLoaders Heavy Classes
These classes provide low-level APIs for loading larger data into AWS services
- S3HeavyToDataSource: Loads large data from S3 into a DataSource
S3HeavyToDataSource
Source code in src/sageworks/core/transforms/data_loaders/heavy/s3_heavy_to_data_source.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
__init__(glue_context, input_uuid, output_uuid)
S3HeavyToDataSource: Class to move HEAVY S3 Files into a SageWorks DataSource
Parameters:
Name | Type | Description | Default |
---|---|---|---|
glue_context
|
GlueContext
|
GlueContext, AWS Glue Specific wrapper around SparkContext |
required |
input_uuid
|
str
|
The S3 Path to the files to be loaded |
required |
output_uuid
|
str
|
The UUID of the SageWorks DataSource to be created |
required |
Source code in src/sageworks/core/transforms/data_loaders/heavy/s3_heavy_to_data_source.py
remove_periods_from_columns(dyf)
staticmethod
Remove periods from column names in the DynamicFrame Args: dyf (DynamicFrame): The DynamicFrame to convert Returns: DynamicFrame: The converted DynamicFrame
Source code in src/sageworks/core/transforms/data_loaders/heavy/s3_heavy_to_data_source.py
timestamp_conversions(dyf, time_columns=[])
Convert columns in the DynamicFrame to the correct data types Args: dyf (DynamicFrame): The DynamicFrame to convert time_columns (list): A list of column names to convert to timestamp Returns: DynamicFrame: The converted DynamicFrame
Source code in src/sageworks/core/transforms/data_loaders/heavy/s3_heavy_to_data_source.py
transform(input_type='json', timestamp_columns=None, output_format='parquet')
Convert the CSV or JSON data into Parquet Format in the SageWorks S3 Bucket, and store the information about the data to the AWS Data Catalog sageworks database Args: input_type (str): The type of input files, either 'csv' or 'json' timestamp_columns (list): A list of column names to convert to timestamp output_format (str): The format of the output files, either 'parquet' or 'orc'
Source code in src/sageworks/core/transforms/data_loaders/heavy/s3_heavy_to_data_source.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|